
33© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_2

CHAPTER 2

Data lake ingestion
strategies

“If we have data, let’s look at data. If all we have are opinions,
let’s go with mine.”

—Jim Barksdale, former CEO of Netscape

Big data strategy, as we learned, is a cost effective and analytics driven

package of flexible, pluggable, and customized technology stacks.

Organizations who embarked into Big Data world, realized that it’s not just

a trend to follow but a journey to live. Big data offers an open ground of

unprecedented challenges that demand logical and analytical exploitation

of data-driven technologies. Early embracers who picked up their journeys

with trivial solutions of data extraction and ingestion, accept the fact that

conventional techniques were rather pro-relational and are not easy in the

big data world. Traditional approaches of data storage, processing, and

ingestion fall well short of their bandwidth to handle variety, disparity, and

volume of data.

In the previous chapter, we had an introduction to a data lake

architecture. It has three major layers namely data acquisition, data

processing, and data consumption. The one that is responsible for building

and growing the data lake is the data acquisition layer. Data acquisition

lays the framework for data extraction from source data systems and

34

orchestration of ingestion strategies into data lake. The ingestion

framework plays a pivotal role in data lake ecosystem by devising data as

an asset strategy and churning out enterprise value.

The focus of this chapter will revolve around data ingestion

approaches in the real world. We start with ingestion principles and

discuss design considerations in detail. The concentration of the chapter

will be high on fundamentals and not on tutoring commercial products.

�What is data ingestion?
Data ingestion framework captures data from multiple data sources and

ingests it into big data lake. The framework securely connects to different

sources, captures the changes, and replicates them in the data lake. The data

ingestion framework keeps the data lake consistent with the data changes at

the source systems; thus, making it a single station of enterprise data.

A standard ingestion framework consists of two components,

namely, Data Collector and Data Integrator. While the data collector

is responsible for collecting or pulling the data from a data source, the

data integrator component takes care of ingesting the data into the data

lake. Implementation and design of the data collector and integrator

components can be flexible as per the big data technology stack.

Before we turn our discussion to ingestion challenges and principles,

let us explore the operating modes of data ingestion. It can operate either

in real-time or batch mode. By virtue of their names, real-time mode

means that changes are applied to the data lake as soon as they happen,

while a batched mode ingestion applies the changes in batches. However,

it is important to note that real-time has its own share of lag between

change event and application. For this reason, real-time can be fairly

understood as near real-time. The factors that determine the ingestion

operating mode are data change rate at source and volume of this change.

Data change rate is a measure of changes occurring every hour.

Chapter 2 Data lake ingestion strategies

35

For real-time ingestion mode, a change data capture (CDC) system

is sufficient for the ingestion requirements. The change data capture

framework reads the changes from transaction logs that are replicated

in the data lake. Data latency between capture and integration phases is

very minimal. Top software vendors like Oracle, HVR, Talend, Informatica,

Pentaho, and IBM provide data integration tools that operate in real time.

In a batched ingestion mode, changes are captured and persisted every

defined interval of time, and then applied to data lake in chunks. Data

latency is the time gap between the capture and integration jobs.

Figure 2-1 illustrates the challenges of building an ingestion framework.

�Understand the data sources
Selection of data sources for data lake is imperative while enriching

analytical acumen for a business statement. Data sources form the basis

of the data acquisition layer of a data lake. Let us look at the variety of data

sources that can potentially ingest data into a data lake.

Data change rate

Heterogenous data
sources

Data ingestion
frequency

Data
Ingestion
Challenges

Data fomat
(structured, semi or

unstructured)
Data Quality

Figure 2-1.  Data Ingestion challenges

Chapter 2 Data lake ingestion strategies

36

•	 OLTP systems and relational data stores – structured

data from typical relational data stores can be ingested

directly into a data lake.

•	 Data management systems – documents and text files

associated with a business entity. Most of the time,

these are semi-structured and can be parsed to fit in a

structured format.

•	 Legacy systems – essential for historical and regulatory

analytics. Mainframe based applications, customer

relationship management (CRM) systems, and

legacy ERPs can help in pattern analysis and building

consumer profiles.

•	 Sensors and IoT devices – devices installed on

healthcare, home, and mobile appliances and large

machines can upload logs to a data lake at periodic

intervals or in a secure network region. Intelligent

and real-time analytics can help in proactive

recommendations, building health patterns, and

surmising meteoric activities and climatic forecast.

•	 Web content – social media platforms like Facebook,

Twitter, LinkedIn, Instagram, and blogs accumulate

humongous amounts of data. It may contain free text,

images, or videos that is used to study user’s behavior,

business focused profiles, content, and campaigns.

•	 Geographical details – data flowing from location data,

maps, and geo-positioning systems.

Chapter 2 Data lake ingestion strategies

37

�Structured vs. Semi-structured vs.
Unstructured data
Data serves as the primitive unit of information. At a high level, data flows

from distinct source systems to a data lake, goes through a processing

layer, and augments an analytical insight. This might sound quite smooth

but what needs to be factored in is the data format. Data classification

is a critical component of the ingestion framework. Data can be either

structured, semi-structured, or unstructured. Depending on the structure

of data, the processing framework can be designed effectively.

Structured data is an organized piece of information that aligns

strongly with the relational standards. It can be searched using a structured

query language and the result containing the data set can be retrieved.

For example, relational databases predominantly hold structured data.

The fact that structured data constitutes a very small chunk of global data

cannot be denied. There is lot of information that cannot be captured in a

structured format.

Unstructured data is the unmalleable format of data. It lacks a

structure; thus, making basic data operations like fetch, search, and

result consolidation quite tedious. Data sourced from complex source

systems like web logs, multimedia files, images, emails, and documents

are unstructured. In a data lake ecosystem, unstructured data forms a pool

that must be wisely exploited to achieve analytic competency. Challenges

come with the structure and volume. Documents in character format

(text, csv, word, XML) are considered as semi-structured as they follow

a discernable pattern and possess the ability to be parsed and stored in

the database. Images, emails, weblogs, data feeds, sensors, and machine-

generated data from IoT devices, audio, or video files exist in binary format

and it is not possible for structured semantics to parse this information.

Chapter 2 Data lake ingestion strategies

38

“Unstructured information represents the largest, most current,

and fastest growing source of knowledge available to businesses and

governments. It includes documents found on the web, plus an estimated

80% of the information generated by enterprises around the world.” -

Organization for the Advancement of Structured Information Standard

(OASIS) - a global nonprofit consortium that works towards building up the

standards for various technology tracks (https://www.oasis-open.org/).

Each of us generate a high volume of unstructured data every day.

We are connected to the web every single hour as share data in one or

the other way via a handful of devices. The amount of data we produce

on social media or web portals gets proliferated to multiple downstream

systems. Without caring much, we shop for our needs, share what we

think, and upload files to share. By data retention norms, data never gets

deleted but follows the standard information lifecycle management policy

set by the organization. At the same time, let’s be aware that information

baked inside unstructured data files can be enormously useful for data

analysis. Figure 2-2 lists the complexities of handling unstructured data

in the real world. Data without structure and metadata is difficult to

comprehend and fit into pre-built models.

No structure

Data Duplication

Storage and Resource
limitations

Figure 2-2.  Unstructured data complexities

Chapter 2 Data lake ingestion strategies

39

Apache Hadoop is a proven platform that addresses the challenges of

unstructured data in the following ways:

	 1.	 Distributed storage and distributed computing –

Hadoop’s distributed framework favors storage and

processing of enormous volumes of unstructured

data.

	 2.	 Schema on read – Hadoop doesn’t require a schema

on write for unstructured data. It is only post

processing that analyzed data needs a schema on

read.

	 3.	 Complex processing – Hadoop empowers the

developer community to program complex

algorithms for unstructured data analysis and

leverages the power of distributed computing.

�Data ingestion framework parameters
Architecting data ingestion strategy requires in-depth understanding of

source systems and service level agreements of ingestion framework. From

the ingestion framework SLAs standpoint, below are the critical factors.

•	 Batch, real-time, or orchestrated – Depending on

the transfer data size, ingestion mode can be batch

or real time. Under batch mode, data movement will

trigger only after a batch of definite size is ready. If

the data change rate is defined and controllable (such

that latency is not impacted), real-time mode can be

chosen. For incremental change to apply, ingestion

jobs can be orchestrated at periodic intervals.

Chapter 2 Data lake ingestion strategies

40

•	 Deployment model (cloud or on-premise) – data lake

can be hosted on-premise as well as public cloud

infrastructures. In recent times, due to the growing

cost of computing and storage systems, enterprises

have started evaluating cloud setup options. With a

cloud hosted data lake, total cost of ownership (TCO)

decreases substantially while return on investment

(ROI) increases.

An ingestion strategy attains stability only if it is able enough to handle

disparate data sources. The following aspects need to be factored in while

understanding the source systems.

•	 Data lineage – it is a worthwhile exercise to maintain

a catalog of the source systems and understand

its lineage starting from data generation until the

ingestion entry point. This piece could be fully owned

by the data governance council and may get reviewed

from time to time to align and cover catalog registrants

under the ongoing compliance regulations.

•	 Data format – whether incoming data is in the form of

data blocks or objects (semi or unstructured)

•	 Performance and data change rate – data change rate

is defined as the size of changes occur every hour. It

helps in selecting the appropriate ingestion tool in the

framework.

Chapter 2 Data lake ingestion strategies

41

•	 Performance is a derivative of throughput and latency.

•	 Data location and security

•	 Whether data is located on-premise or in a public

cloud infrastructure, network bandwidth plays an

important role.

•	 If the data source is enclosed within a security layer,

the ingestion framework should be enabled and

establishment of a secure tunnel to collect data for

ingestion should occur.

•	 Transfer data size (file compression and file splitting) –

what would be the average and maximum size of block

or object in a single ingestion operation?

•	 Target file format – Data from a source system needs to

be ingested in a Hadoop compatible file format.

Table 2-1 compiles the list of file formats, their features, and scenarios

in which they are preferred for use.

Chapter 2 Data lake ingestion strategies

42

Table 2-1.  File formats and their features

File type Features Usage

Parquet • �Columnar data

representation

• Nested data structures

• Good query performance

• Hive supports schema evolution

• Optimized for Cloudera Impala

• Slower write performance

Avro • �Row format data

representation

• Nested data structures

• Stores metadata

• �Supports file splitting and block

compression

ORC • �Optimized Record

Columnar files

• �Row format data

representation as

key-value pair

• �Hybrid of row and columnar

format

• �Row format helps to keep

data intact on the same node

• �Columnar format yields

better compression

• Good for data query operations

• Improved compression

• Slow write performance

• Schema evolution not supported

• �Not supported by Cloudera

Impala

SequenceFile • �Flat files as key-value pairs • Limited schema evolution

• Supports block compression

• �Used as interim files during

MapReduce jobs

CSV or Text

file

• �Regular semi-structured

files

• Easy to be parsed

• �No support for block

compression

• Schema evolution not easy

(continued)

Chapter 2 Data lake ingestion strategies

43

Why ORC is a preferred file format? ORC is a columnar storage format

that supports optimal execution of a query through indexes which help

in quick scanning of files. ORC supports indexes at the file level, stripe

level, and row level. File and stripe indexes work similar to storage indexes

from a relational perspective in that they help in quick scanning of data by

narrowing down the scan surface area. They help in pruning out the stripes

from scans during query execution.

Stripe indexes – An ORC file of a table is organized into stripes of

default 64MB size. Stripe size can be configured at the table level. Each

stripe implicitly indexes the column and holds meaningful details like

min/max value or a dictionary for quick lookup. Some of the key ORC

configuration parameters are listed below. Note that these parameters

should be set at table level within TBLPROPERTIES clause.

	 1.	 orc.compress – Compression codec for ORC file

	 2.	 orc.compress.size – Size of a compression chunk

	 3.	 orc.create.index – whether or not the indexes should

be created?

	 4.	 orc.stripe.size – Size of memory buffer (bytes) for writing

	 5.	 orc.row.index.stride – Rows between index entries

	 6.	 orc.bloom.filter.columns – BLOOM_FILTER stream

created for each of the specified column

Table 2-1.  (continued)

File type Features Usage

JSON • �Record structure stored as

key-value pair

• �No support for block

compression

• �Schema evolution easier than

CSV or text file as metadata

stored along with data

Chapter 2 Data lake ingestion strategies

44

For more details on ORC parameter, you can refer to ORC Apache

page – https://orc.apache.org/docs/hive-config.html.

For example, ORC file storage of CUSTOMER table (Figure 2-3)

A user issues the below query. The query filters the results on “state”

column.

SELECT ID, NAME

FROM CUSTOMER

WHERE CUSTOMER.state = 'CA';

For CUSTOMERS table, the two stripes have 10,000 rows each. The

number of rows in a particular stripe is configurable while creating a

table. Each stripe contains inline indexes such as min, max, and lookup/

dictionary for the data within that stripe. ORC’s predicate pushdown will

consult these inline indexes to identify if an entire block can be skipped

all at once. The second stripe will be discarded because its index does not

have the value “CA” in state column.

If a column is sorted, relevant records will get confined to one area on

disk and the other pieces will be skipped very quickly. Skipping works for

number types and for string types. In both instances, it’s done by recording

a min and max value inside the inline index and determining if the lookup

ID
(min = 1, max=10000)

ID
(min = 10001, max=20000)

1
First

10,000
Rows

Stride
Index

Second
10,000
Rows

2

3

10001

10002

10003

Name
(dictionary, min, max)

Name
(dictionary, min, max)

Bob

Larry

Sue

State
(dictionary, min, max)

NJ

CA

TX

Steve

Alan

Mary

State
(dictionary, min, max)

OR

ND

FL

Figure 2-3.  Stripes of CUSTOMER table

Chapter 2 Data lake ingestion strategies

45

value falls outside that range. Sorting can lead to very nice speedups, but

there is a trade-off with the resources needed in order to facilitate the

sorting during insertion.

ORC usage best practices

	 1.	 Hive queries must be analyzed to explore usage

patterns and track down columns that frequently

occur in predicates.

	 2.	 Hive tables must be timely analyzed to keep the

statistics updated

	 3.	 Data should be distributed and sorted during

ingestion. This will help in effective resource

management during query processing.

	 4.	 If the filtering column in a query has high cardinality,

then lower stripe size works well. If the cardinality

is low, then a higher stripe size is preferred.

	 5.	 Starting hive 1.2, support for bloom filters was

included to ORC semantics to provide granular

filtering. It is used on sorted columns.

The ORC file format is supported by Hive, Pig, Apache Nifi, Pig, Spark,

and Presto. On the adoption fronts, Facebook and Yahoo use ORC file

storage format in production and have observed significant performance

compared to other formats.

�ETL vs. ELT
It would be an understatement that Extraction, Transformation, and Loading

(ETL) protocol under-sufficed the data motion requirements for traditional

data warehouses. It has been a standard de-facto process since the evolution

of data movement strategies. However, with the next-gen data warehousing

strategies and big data trends, the ETL approach tends to require tweaks.

Chapter 2 Data lake ingestion strategies

46

Contrary to the traditional ETL approach, the data lake ingestion

strategy adopts the ELT approach. With this approach, data gets loaded

directly into the data lake after being collected. Transformation lies in the

purview of the consumption or analytical layer (Figure 2-4).

Data lake is ideated to hold data from a variety of sources in its rawest

form. A thin data scrubbing layer may optionally exist to clean raw data

before it gets ingested into the data lake and consumed by analytical

models. However, having a wide layer of data transformation is not

recommended as it may restrict the surface area of data exploration,

thereby narrowing down the data agility. Other rationale behind the ELT

approach is the performance factor. Running transformation logic on huge

volumes of data may foster a latency between the data source and data

lake. The transformation layer can instead be flexed down to a curated

layer to empower analytical models to retrofit the data stance. Figure 2-5

shows the data movement in an ELT model.

Transform

Data LakeData Source

LoadExtract

Figure 2-4.  Data agility is reduced in a typical ETL process

Chapter 2 Data lake ingestion strategies

47

Other factors that stand in support of ELT in data lakes are cost

effectiveness and maintenance. Since the time data lake concept has

caught all the eyes of data world, ELT has been the most trusted approach.

�Big Data Integration with Data Lake
Data is a ubiquitous entity. Until the big data trend acquired the waves, it

was the relational databases who held the system of records in a structured

format. Although relational data store vendors are finding ways to address

unstructured data, adoption is majorly driven by factors like cost, ease of

processing, and use-cases.

Data lakes are designed to complement contemporary data

warehousing systems by empowering analytical models to churn out

the real value of “data” irrespective of its format. In this chapter, we

will cover techniques and best practices of bringing structured as well

as unstructured data into data lake. This section focuses on bringing

structured data into data lake. We will walkthrough ingestion concepts,

best practices, and tools and technologies used in the process.

Data LakeData Source

Load

Extract

Transformations

Analytics

Figure 2-5.  Data agility remains intact in a typical ELT process

Chapter 2 Data lake ingestion strategies

48

�Hadoop Distributed File System (HDFS)
Although we assume the readers of this book to be proficient with Hadoop

concepts and HDFS, but to maintain the logical flow of concepts, let us get

a high-level overview of HDFS.

The Hadoop Distributed File System constitutes a layer of abstraction

on top of POSIX (or like) file system. During a write operation, a file is

split into small blocks and apparently replicated across the cluster. The

replication happens transparently within the cluster while the replicas

cannot be distinctly accessed. Replication ensures fault tolerance and

resiliency. Whenever a file gets processed in the cluster, all its replicas are

processed in parallel; thus, bettering the computational performance and

scalability.

The hdfs dfs command-line utility can be used to issue the file system

commands in the Hortonworks distribution of Hadoop. In addition to this

utility, you can also use Hadoop’s web interface, WebHDFS REST API, or

Hue to access the HDFS cluster.

hdfs dfs [GENERIC_OPTIONS] [COMMAND_OPTIONS]

	 1.	 Shell commands are similar to common Linux file

system commands such as ls, mkdir, cat

	 2.	 Help commands –

	 a.	 $ hdfs dfs

	 b.	 $ hdfs dfs -help

	 c.	 $ hdfs dfs -usage <shell command>

	 3.	 Directory commands like cd and pwd not supported

in HDFS.

Chapter 2 Data lake ingestion strategies

49

�Copy files directly into HDFS
One of the simplest methods to bring data into Hadoop is to copy the files

from local to HDFS. If there are bunch of csv spreadsheets, JSON, or raw

text files on the local system, you can copy the files directly into HDFS

using put command.

$ hdfs dfs mkdir /user/hdfs/sales_2017

Copies sales.csv from local to HDFS cluster

$ hdfs dfs -put sales_Q1.csv sales_2017

$ hdfs dfs -put sales_Q2.csv sales_2017

List the cluster files

$ hdfs dfs -ls /user/hdfs

Once the file is available in the Hadoop cluster, it can be consumed

by Hadoop processing layers like hive data store, pig script, mapreduce

custom programs or spark engine.

�Batched data ingestion
In simple terms, batch is a frequency based incremental capture that

kicks off as per the preset schedule. For most of the ETL frameworks, the

implementation of the “extract” phase works on similar principles. Data

collector fires a SELECT query (also known as filter query) on the source

to pull incremental records or full extracts. Performance of the filter query

determines how efficient a data collector is. The query-based approach to

extract and load data is easy to implement with minimal failures.

Chapter 2 Data lake ingestion strategies

50

From a relational data source, data can be extracted using the filter

query by following either of the techniques listed below.

•	 Change Track flag – if each changed record (insert/

update/delete) on the source database can be flagged,

the filter query can capture just the flagged records

from the source table.

•	 Primary key will be required to merge the changes

at the target

•	 If primary key exists on target

•	 Delete the existing record

•	 Insert the fresh record from changed data set

•	 If primary key doesn’t exist on target

•	 Insert the record from changed data set

•	 If the target table is modeled as type 2 SCD (slowly

changed dimension), all changed records can

be directly inserted to target table. A timestamp

attribute or transaction id can be maintained on

target to trace change history of a primary key.

•	 Incremental extraction – the filter query pulls the

differential data based on a column that can help in

identifying changes in the source table. It can be a

timestamp attribute or even a serialized id column.

•	 To apply the changes, primary key is a must

•	 If PK exists, delete old and insert the new record

•	 If PK doesn’t exist, insert the new record

Chapter 2 Data lake ingestion strategies

51

•	 Incremental extraction frequency – from the data

consistency perspective, it is important to be aware

when the source table is active for transactions and

what is data change rate. If the change rate is high,

incremental job should be periodically orchestrated.

•	 Full extraction – if the source database table is not

very large and change frequency is low, target table

can undergo full refresh every time the ETL runs. This

ensures data consistency between source and target

until source data gets modified. For source tables

with master data and configuration data, full refresh

approach can be followed.

Once captured from the source via filter query, the data extract needs

to be staged on the edge node or ETL server, before its gets merged into

Hadoop. This brings up the need for an additional storage system prior

to the Hadoop cluster. The dual write approach adds to the latency and

brings inconsistency in data lake.

�Challenges and design considerations
An organizational data lake deals with all formats of data. Data, whether

structured or unstructured, struggles with mutable data on Hadoop.

Hadoop, being a distributed system relies on concurrency for functionality

but dealing with mutability and concurrency could be meaty challenge.

The ingestion framework must ensure that only one process updates the

mutable object at a given time and avoids dirty read problems.

Other problems include datatype mismatch between source systems

and hives, precision field handling, special character handling and

efficient transfer of data with table size varying from Kilobyte (KB) to

Terabyte (TB).

Chapter 2 Data lake ingestion strategies

52

�Design considerations
The issues discussed above are common in the target system, namely

Hadoop data lake. The design considerations discussed in this section

must be practiced on Hadoop objects.

	 1.	 Table partitioning – Splitting the data into small

manageable chunks provides better control in

terms of resource consumption and data analysis.

Partitioning strategy should factor in the following

parameters –

	 a.	 Low-cardinality columns

	 b.	 Frequently used in joins and query predicates

	 c.	 Columns that can create interval based

partitions

	 2.	 File storage format – ORC file storage format

gives better compression compared to other file

formats. In addition, it also stores index headers for

optimized read access from files.

	 3.	 Full load or incremental - Full load integration

should be practiced if change data capture is not

possible. Data size and refresh frequency must be

kept in mind while planning full load for objects.

	 4.	 Change merge strategy – If the target landing table

is partitioned, then the changes can be tagged by

table and the most recent partition. During the

exchange partition process, the recent partition can

be compared against the “change” data set to merge

the changes. Figure 2-5 shows the process flow of

strategy to merge change using exchange partition

for partitioned hive tables.

Chapter 2 Data lake ingestion strategies

53

Let us consider a simple case of merging the changes using Piglatin.

We have an interval partitioned hive table. The below code piece will show

how to merge incremental changes from source data into a hive partition.

---sample data in a hive partition---

[bda@datalake sample-merge]$ cat hive_part4.txt

"20001""delhi"

"20002""mumbai"

"20003""bangalore"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"

"20010""chandigarh"

Changes are captured via a change capture tool. The changed data

set has a delimiter “ctrl A”. Below is the change dataset that needs to be

merged with most recent partition in hive table.

[bda@datalake sample-merge]$ cat change_dataset.txt

"I"^A"20089"^A"1"^A"2014-09-04 12:38:08.000"^A"20015"^A"noida"

Exchange
Partition

Prepare final data set
with merged changes

P1

P2

P3

P4

#Changes

P4

1

Change capture

2 Pull most recent partition for Compare and Merge

3 4

Data source
Hive Table with

partitions

Figure 2-6.  Merge changes through exchange partition

Chapter 2 Data lake ingestion strategies

54

"D"^A"20089"^A"2"^A"2014-09-04 12:38:08.000"^A"20003"^A\N

"I"^A"20089"^A"3"^A"2014-09-04 12:38:08.000"^A"20003"^A"bengaluru"

"D"^A"20089"^A"5"^A"2014-09-04 12:38:08.000"^A"20001"^A\N

Pig script to merge the changes with original file.

A = LOAD '/user/bda/merge_change/hive_p4_merged_set.txt'

using PigStorage('\u0001')

AS (

opcode:chararray

, seqno:chararray

, row_id:chararray

, commit_timestamp:chararray

, id:chararray

, place:chararray);

B = GROUP A BY id;

C = foreach B {

D = order A by seqno, row_id desc;

top = limit D 1;

generate flatten(top);

};

Check and verify the changes in main file. Note that [id = 20001] has been

deleted, [id=20003] has been updated, and [id=20015] has been inserted.

[bda@datalake sample-merge]$ cat hive_p4_merged_set.txt

"20002""mumbai"

"20003""bengaluru"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"

Chapter 2 Data lake ingestion strategies

55

"20010""chandigarh"

"20015""noida"

Let’s take another use case to demonstrate change-merge using Spark.

We’ll work with a main data set and changed data set. Master Data in

Target Location

val main_data = spark.table(t.tablename).filter(cond) //filter

on the specific partition

We’ll create two expressions using primary keys in the below fashion.

•	 Combining primary keys – pk1 AND pk2 … pkn

•	 Combining primary keys having null – pk1 is null AND

pk2 is null … pkn is null

Below is the sample of Main Dataset A

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10001 0

2 Shubham 18929 10002 0

3 Surya 12931 10003 0

4 Arun 12313 10004 0

5 Rita 12930 10005 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

Below dataset represents the incremental changes captured via CDC

mechanism

Chapter 2 Data lake ingestion strategies

56

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10020 1

2 Shubham 18929 10022 1

3 Surya 453202 10034 2

4 Tarun 489503 10098 0

5 Pranav 129789 10099 2

Here P.K. is the primary key column, TIME_ID is the defined value

for timestamps and DELETE_FLAG is the value where 0 is termed as New

Insert, 1 as Delete and 2 as an Update. The following spark code will merge

the data and store it as a temporary view

main_data.as("m").join(broadcast(incr_data.as("k").

filter(cond)), expr(str1), "left_outer").filter(str2).

select("m.*").union(incr_data.filter("del_flag != 1")).createOr

ReplaceTempView(mergedTable)

Figure 2-7 shows the merge workflow process.

SET B

COMPACTION

COMPACTED

MERGING

UPDATED

SET B*
SET A

RESULT
SET

Figure 2-7.  Merge operation workflow process

Chapter 2 Data lake ingestion strategies

57

Below is the data set produced after merge.

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 129789 10099 0

3 Surya 453202 10034 0

4 Arun 12313 10035 0

5 Rita 12930 10036 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

11 Tarun 489503 10098 0

�Commercial ETL tools
While the underlying principle of most of the 3rd party commercial ETL

tools remain as discussed above, implementations can be different. For

example, Informatica PowerCenter stores metadata in an Oracle database

repository while Talend generates java code to do the job. Pentaho, on the

other hand, provides a user-friendly interface.

Because data lake is a new opportunity, data integration software

vendors have started complementing their ETL products with Hadoop

centric capabilities. Modern-day ETL tools are flexible, platform agnostic, and

capable of optimized extraction, through reusable code generation, and much

more.

The 2017 Gartner magic quadrant (Figure 2-8) compares the data

integration tools and positions Informatica as a leader.

Chapter 2 Data lake ingestion strategies

58

�Real-time ingestion
A batched data ingestion technique is fool-proof as far as data sanity

checks are concerned. However, it fails to paint the real-time picture of

the business due to the lag associated with it. To enhance the business

readiness of analytical frameworks, it is expedient to process a business

transaction as soon as it occurs. In (near) real-time processing, changes

are captured either at very low latency or in real-time. A log-based real-

time processing exercise is known as change data capture.

CHALLENGERS

Microsoft

Adeptia Attunity

Syncsort
Pentaho

Actian

COMPLETENESS OF VISION

AB
IL

IT
Y

TO
 E

XE
CU

TE

Source: Gartner (August 2017)

As of August 2017

Information Builders

Cisco
Denodo

Informatica

IBM

SAP
Talend

Oracle
SAS

LEADERS

NICHE PLAYERS VISIONARIES

Figure 2-8.  Gartner’s magic quadrant for commercial data
integration products. https://www.informatica.com/in/data-
integration-magic-quadrant.html

Chapter 2 Data lake ingestion strategies

59

Change data capture refers to the log mining process to capture only

the changed data (insert, update, delete) from the data source transaction

logs. A real-time or micro-batch CDC detects the change events by

scanning the database logs as they occur. With minimal access to enterprise

sources, CDC incurs no load on source tables; thereby minimizing latency

and ensuring consistency between source and target systems.

So, why CDC? As we discussed in the last section, conventional

ETL tools use SQL to extract and batch the incremental data. Query

performance may be impacted due to continuous growth in source

database’s volume and its concurrent workload. In addition, the query

incurs its portion of the workload on the source system.

Figure 2-9 shows a change data capture workflow between source and

target systems.

As part of business intelligence and data compliance initiatives, CDC

helps in aligning with data-as-a-service principles by providing master

data management capabilities and enabling quicker data quality checks.

Summing up the points, the CDC ingestion pipeline helps in –

•	 Eliminating the need to run SQL queries on source

system. Incurs no load overhead on a transactional

source system.

•	 Achieves near real-time replication between source

and target

Capture

Scan DB
Transaction logs
to capture
changes

Transform as per
data type
compatibility

Detect uniqueness
based on Source
PK

Extract Apply

Figure 2-9.  Change Data capture workflow

Chapter 2 Data lake ingestion strategies

60

•	 Log mining helps in capturing granular data operations

like truncates as well

�CDC design considerations
To design a CDC ingestion pipeline, the source database must be enabled

for logging. All relational databases follow a roll forward approach by

persisting the changes in logs. Each and every event is persistently logged

with a change id (or system change number) in a log and will never get

purged. An Oracle database allows enabling supplement logging at the

table level. Similarly, SQL Server allows logging at the database level.

Without logging, transaction logs cannot be mined to capture the changes.

The tables at the source database must hold a primary key for

replication. It helps the capture job in establishing uniqueness of a record

in the changed data set. A source PK ensures the changes are applied to

the correct record on target. If the source table doesn’t have primary key

defined, CDC job can designate a composite primary key to uniquely

identify a record in the change table.

It would be a terrible design to establish uniqueness based on a unique

constraint as it allows multiple NULLs in a column. In the apply phase, a

change record with null identity will fail to pick a matching null record at

the target.

Trigger based CDC –Another method of setting up change-data-

capture is through triggers at the table level. A trigger helps in capturing

row changes in a separate table synchronously, which apparently gets

replicated to the target. Either the entire record is captured or just the

changed attributes along with the primary key. The downside of this

approach is that it induces overhead of one more transaction before the

original transaction is deemed complete.

Chapter 2 Data lake ingestion strategies

61

This method usually works in two scenarios –

•	 Logging not enabled on the source database

•	 Reading transaction logs is a tedious task due to its

binary format

•	 T-logs not available for scanning due to software

restriction or small retention time

So, should you always prefer CDC over batched ingestion? No. Real-

time integration or CDC should be set up only when business demands it.

It is a feature to be contemplated based on multiple factors like business’s

service-level agreement, change size, and target readiness.

�Example of CDC pipeline: Databus, LinkedIn’s
open-source solution
Databus, a real-time change data capture system, was developed by

LinkedIn in the year 2006. In 2013, LinkedIn released the open-source

version of Databus. Since its development, Databus has been an essential

component of the data processing framework at LinkedIn. Databus

provides a real-time data replication mechanism with the ability to handle

high throughput and latency in milliseconds. The Databus source code is

available at its git repo at https://github.com/linkedin/databus.

Databus is a source agnostic framework that scales seamlessly to

multiple consumers, while the transactional sources are still operational.

The source code includes the adaptors for different relational sources

like Oracle and MySQL. Figure 2-10 shows the working components of

Databus.

Chapter 2 Data lake ingestion strategies

62

Databus works with these three most important pieces – relays,

bootstrap, and client library. At a high level, the following list outlines the

steps of Databus workflow.

•	 Relay is responsible for pulling the most recent

committed transactions from the source

•	 Relays are implemented through tungsten

replicator

•	 Relay stores the changes in logs or cache in compressed

format

•	 Consumer pulls the changes from relay

•	 Bootstrap component – a snapshot of data source on

a temporary instance. It is consistent with the changes

captured by Relay. (Refer to Figure 2-11)

Primary
DB

Updates

Standardi-
zation

Search
Index

Data Change Events on Databus

Graph
Index

Read
Replicas

Figure 2-10.  Databus component diagram. Source: https://
engineering.linkedin.com/data-replication/open-sourcing-
databus-linkedins-low-latency-change-data-capture-system

Chapter 2 Data lake ingestion strategies

63

•	 If any consumer falls behind and can’t find the

changes in relay, bootstrap component transforms

and packages the changes to the consumer

•	 A new consumer, with the help of client library, can

apply all the changes from bootstrap component

until a time. Client library will point the consumer

to Relay to continue pulling most recent changes

Figure 2-12 branches out the benefits of LinkedIn’s Databus solution.

Source-agnostic

Low latency
consumption

Scalable,
reliable and high

available

Maintains
commit order of

the source

ACID properties
preserved

Databus

Figure 2-12.  Linkedin’s Databus differentiators

Relay LogWriter Log Storage

LogApplier
Snapshot

Storage

Consolidated changes

Consistent Snapshot

Figure 2-11.  Bootstrap component in Databus

Chapter 2 Data lake ingestion strategies

64

�Apache Sqoop
Sqoop or “SQL to Hadoop” has been one of the top Apache projects that

addresses the data integration requirements of Hadoop. It is a native

component of the HDFS layer that allows bi-directional “batched” flow

of data from the Hadoop distributed file system. Not just the users can

automate data transfer between relational databases and Hadoop, but a

reverse operation empowers enterprise data warehouses to augment their

consumption layer with map-reduced data from data lake.

Apache Sqoop is available in two versions – sqoop 1 and sqoop 2.

�Sqoop 1
The very first version of Sqoop was introduced in 2009. In August 2011, the

project moved under Apache and quickly, Sqoop became one of the most

sought-after ingestion tools.

Connectors are the motivation behind the working of Sqoop 1. The

JDBC based connectors to different source systems are responsible for

deriving metadata of source objects and data transfer. Let us list down the

key highlights of Sqoop:

•	 Java based utility (web interface in Sqoop2) that

spawns Map jobs from MapReduce engine to store data

in HDFS

•	 Provides full extract as well as incremental import

mode support

•	 Runs on HDFS cluster and can populate tables in Hive,

HBase

•	 Can establish a data integration layer between NoSQL

and HDFS

Chapter 2 Data lake ingestion strategies

65

•	 Can be integrated with Oozie to schedule import/

export tasks

•	 Supports connectors to multiple relational databases

like Oracle, SQL Server, MySQL

�Sqoop 2
Sqoop2 succeeded sqoop with a major focus on optimizing data transfer,

easing of using extension framework, and ensuring security. Sqoop2 works

on client-server architecture (service-based model) in which the server

acts as the host for two critical components, the connectors and the jobs.

Sqoop2 features are as follows–

•	 Sqoop 2 can act as a generic data transfer service

between any-to-any systems.

•	 Sqoop 2 comes with a web interface for better

interactivity. Command line utility still works. Sqoop

2 web interface uses REST services running on sqoop

server. It helps in easy integration with Oozie and other

frameworks.

•	 Sqoop 2 employs both mapper and reducer jobs during

data transfer activity. Mapper jobs extract the data,

while the reducer operation transforms and loads the

data into the target.

•	 Connectors will be setup on Sqoop 2 server which

requires connection details to the source and targets.

Role-based access to connection objects mitigates

the risk of unauthorized access on source and target

systems.

Chapter 2 Data lake ingestion strategies

66

•	 The metadata repository stores connections and jobs.

Connectors register metadata on the sqoop server to allow

the connection to the source and the creation of jobs.

•	 The connector consists of partitioning API (create splits

and enabled parallelism), Extract API (Mappers), and

Loading API (Reducers)

Figure 2-13 differentiates Sqoop1 and Sqoop2 in terms of components

at sqoop processing layer.

�How Sqoop works?
Sqoop adopts quite a simple approach to extract data from a relational

database. In a nutshell, it builds up an SQL query that runs at the source to

capture the source data, which later gets ingested into Hadoop. Let us look

at the internals of Sqoop.

Sqoop leverages mapper jobs of MapReduce processing layer in

Hadoop, to extract and ingest data into HDFS. By default, a sqoop job has

four mappers; this number is configurable though. Each of these mappers

is given a query to extract data from the source system. Query for a mapper

Enterprise
Data

warehouse

Relational
Databases

NoSQL

Enterprise
Data

warehouse

Relational
Databases

NoSQL Job Mgr

Connection Mgr

Repository Mgr

Sqoop

Sqoop2

Hive/HBase

HDFS
Hive/HBase

HDFS

Sqoop 1 Sqoop 2

Map-1

Map-2

Map-3

Map-4

Map-5

Map-1

Map-2

Map-3
Reduce

Task

Map-4

Map-5

Figure 2-13.  Sqoop 1 vs Sqoop2

Chapter 2 Data lake ingestion strategies

67

is build using a split rule. As per the split rule, the values of --split-by

column must be equally distributed to each mapper. This implies that

--split-by column should be a primary key. The entire range of PK is

equally sliced for the mappers. Once the mapper jobs capture source data,

either it is dumped in HDFS storage or loaded into hive tables.

Figure 2-14 demonstrates the primary key split mechanism.

�Sqoop design considerations
Below are the key factors that can help in designing sqoop tasks effectively.

	 1.	 Specify number of mappers in --num-mappers [n]

argument

	 2.	 Number of mappers

	 a.	 Note that mappers run in parallel within

Hadoop, just like parallel queries

	 b.	 Large number of mappers might increase the

load on source database. Decision should be

taken based on size of the table and workload

on the source database

min

Mapper-1 Mapper-2 Mapper-3 Mapper-4

--split-by [column]

Split-1 Split-2 Split-3 Split-4

max

PK range

Figure 2-14.  Sqoop split mechanism

Chapter 2 Data lake ingestion strategies

68

	 c.	 Depends upon –

	 i.� � Handling of concurrent queries in the

source database

ii.� � Varies by table, split configuration, and

run time

	 3.	 If the source table cannot be split on a column, use

--autoreset-to-one-mapper argument to perform

unsplit full extract using single mapper

	 4.	 If the source table has all character columns with or

without a defined primary key, we can have go with

the below approaches –

	 a.	 Add surrogate key as primary key and use it for

splits

	 b.	 Create manual data partitions and run multiple

sqoop jobs with one mapper for each partition.

This may cause data skewness and jobs will run

for irregular durations depending upon the data

volume per split

	 c.	 Character based key column can be used as

--split-by column as usual, if the column has –

	 i.� � Unique values (or a partitioning key like

location, gender)

ii.�  Integer values that can be implicitly type casted

	 5.	 Sparse split-by column

	 a.	 Use --boundary-query to create splits

	 b.	 It works similar to retrieving split size from

another lookup table

Chapter 2 Data lake ingestion strategies

69

	 c.	 For text attributes, set

-Dorg.apache.sqoop.splitter.allow_text_

splitter=true

	 6.	 Export data subsets

	 a.	 If only subset of columns is required from the

source table, specify column list in --columns

argument.

	 i.� � For example, --columns “orderId, product,

sales”

	 b.	 If limited rows are required to be “sqooped”,

specify --where clause with the predicate

clause.

	 i.  For example, --where “sales > 1000”

	 c.	 If result of a structured query needs to be

imported, use --query clause.

	 i.� � For example, --query ‘select orderId,

product, sales from orders where

sales>1000’

	 7.	 Good practice to stage data in a hive table using

--hive-import

	 a.	 If table exists, data gets appended. Data can be

overwritten using --hive-overwrite argument to

indicate full refresh of the table

	 b.	 If table doesn’t exist, it gets created with the

data

	 c.	 Use --hive-partition-key and --hive-

partition-value attributes to create partitions

on a column key from the import

Chapter 2 Data lake ingestion strategies

70

	 d.	 By default, data load is append in nature. Data

load approach can be incremental by

	 e.	 Delimiters can be handled through either of the

below ways –

	 i.� � Specify --hive-drop-import-delims to

remove delimiters during import process

ii.� � Specify --hive-delims-replacement

to replace delimiters with an alternate

character

	 8.	 Connectivity – ensure source database connectivity

from the sqoop nodes

	 a.	 Create and maintain a dedicated user at source

with required access permissions

	 9.	 Always prefix table name with the schema name as

[schema].[table name]

	 a.	 Supply table name in upper case

	 10.	 Connectors – common (JDBC) and direct (source

specific)

	 a.	 Direct connector yields better performance

	 b.	 Use --direct mode argument with MySQL,

PostgreSQL, and Oracle

	 11.	 Use --batch argument to batch insert statements

during export

	 a.	 Uses JDBC batch API

	 b.	 Native properties of database (like locking,

query size) apply

Chapter 2 Data lake ingestion strategies

71

	 c.	 Sqoop.export.records.per.statement

(10) – collates multiple rows in a single insert

statement

	 d.	 Sqoop.export.statements.per.transaction

(10) – number of inserts in a transaction

	 12.	 Approaches to secure Sqoop jobs

	 a.	 For secure data transfer, use useSSL=true and

requireSSL flags

	 b.	 Enable Kerberos authentication

	 13.	 You can even create a Sqoop Spark job to enhance

sqoop job performance

	 a.	 MapReduce engine might get slow with

increased number of splits

	 b.	 No changes to the connectors. Enables

pluggable processing engine

	 c.	 Spark job execution –

	 i.� � Data splits are converted to Resilient

Distributed Dataset (RDD)

ii.� � Extract API reads records, while Load API

writes data

�Native ingestion utilities
Ever since the Hadoop ecosystem reached a thoughtful stage, the tech

stack has been able to provide extremely flexibility to implementers

and practitioners. The big data ecosystem, in itself, comprises multiple

pluggable components, which in turn, opens up a wide space for

exploration and discovery. Ingestion patterns have evolved from tightly

coupled utilities to standard and generic frameworks.

Chapter 2 Data lake ingestion strategies

72

Many of the database software vendors who are planning their move to

data lake, have developed home-grown utilities to facilitate transfer of its

own data to Hadoop. What differentiates these native utilities from generic

tools is the deep expertise in data placement strategy and the ability to

capitalize on database architecture. In this section, we will cover utilities

provided by the Oracle database and Greenplum to load data into HDFS.

�Oracle copyToBDA
The copy to BDA utility helps in loading Oracle database tables to Hadoop

by dumping the table data in Data Pump format and copying them into

HDFS. The utility serves a full extract and load operation to Hadoop. If the

data at the source changes, the utility must be rerun to refresh the data

pump files. Once the data pump files are available in Hadoop, data can be

accessed through Hive queries.

Note that the utility works on Oracle Big Data stack comprising

Oracle Exadata and Oracle Big Data appliance, preferably connected via

Infiniband network. It is licensed under Oracle Big Data SQL.

Under the hood, the utility uses ORACLE_DATAPUMP access driver and

Hadoop client on Exadata to transfer the data. Figure 2-15 shows the

workflow of the CopyToBDA utility.

Additional notes –

	 1.	 Copy to BDA utility works well for static tables

whose data change rate is not frequent. Reason

being it doesn’t allow the continuous refresh

between source data and target.

Create database
directory for
data pump

Create external
table in Oracle to
dump table data

Copy the file to
Hadoop cluster

Create Hive
external table in

Hadoop

Figure 2-15.  CopyToBDA utility workflow

Chapter 2 Data lake ingestion strategies

73

	 2.	 If the table size is large, data can be dumped in

multiple .dmp files

	 3.	 For a Hive external table to access the dump files

and prepare the result set, specify appropriate

SerDe, InputFormat and OutputFormat

	 a.	 SERDE 'oracle.Hadoop.hive.datapump.

DPSerDe'

	 b.	 INPUTFORMAT ‘oracle.Hadoop.hive.datapump.

DPInputFormat’

	 c.	 OUTPUTFORMAT ‘org.apache.Hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat’

�Greenplum gphdfs utility
Greenplum offers the gphdfs protocol to enable batched data transfer

operations between the Greenplum and Hadoop clusters. For Greenplum

as a source, the utility has been a de-facto mechanism for data movement

as it fully exploits the MPP capability of the database. On the target side,

it can work with various flavors of Hadoop like Cloudera, Hortonworks,

MapR, Pivotal HD, and Greenplum HD.

The gphdfs utility must be setup on all segment nodes of a Greenplum

cluster. During a data transfer operation, all segments concurrently

push the local copies of data splits to the Hadoop cluster. The number

of segment nodes in the Greenplum cluster measure the degree of

parallelism of data transfer. Data distribution on segments plays a key role

in determining the effort at a segment level process. If a table is unevenly

distributed on the cluster, the gphdfs processes will have an irregular split

size, which will impact the performance of the data ingestion process.

Chapter 2 Data lake ingestion strategies

74

The utility must be installed on each of the segment nodes. Installation

steps are as follows:

	 1.	 Create repo file using

wget -nv http://public-repo-1.hortonworks.com/HDP/

centos7/2.x/updates/2.6.1.0/hdp.repo

	 2.	 Install the libraries using YUM

yum install Hadoop Hadoop-hdfs Hadoop-libhdfs Hadoop-

yarn Hadoop-mapreduce Hadoop-client openssl -y

	 3.	 Set the Hadoop configuration parameters

	 a.	 gpconfig -c gp_Hadoop_home -v " '/usr/

hdp/2.6.1.0-129'”

	 b.	 gpconfig -c gp_Hadoop_target_version -v

"'hdp2'"

	 c.	 Set java home and Hadoop home

Figure 2-16 demonstrates a schematic of a the gphdfs utility.

Greenplum cluster Hadoop cluster

Segment 1
DataNode

GP
 M

as
te

r N
od

e

Na
m
eN

od
e

Writeable
Ext Table

Segment 2

Segment 3

Segment 4

Segment 5

Writeable
Ext Table

Writeable
Ext Table

Writeable
Ext Table

Writeable
Ext Table

DataNode

DataNode

DataNode

DataNode

DataNode

Figure 2-16.  How GPHDFS utility works

Chapter 2 Data lake ingestion strategies

75

Design considerations

	 1.	 JVM and gphdfs – The gphdfs protocol uses JVM

on each segment host to access and write data into

HDFS. While the writable external table is created

on segment host and accessed via gphdfs, each

segment instance initializes the JVM process with

1GB of memory.

In case of high workloads during reading and

writing multiple tables at the same time, JVM Heap

memory issue might occur. You can decrease the

value of the parameter GP_JAVA_OPT in $GPHOME/

lib/Hadoop/Hadoop_env.sh from 1GB to 500MB.

	 2.	 Kerberos and gphdfs – The gphdfs protocol supports

Kerberos authentication for Hadoop cluster.

Kerberos authentication details are required to be

updated in below files –

•	 Yarn-site.xml

•	 Core-site.xml

•	 Hdfs-site.xml

In addition, the /etc/krb5.conf must be present

in the Greenplum cluster. In case you are facing

GSSAPI errors while accessing HDFS, install the Java

Cryptography extension (JCE) on Greenplum nodes

($JAVA_HOME/jre/lib/security).

	 3.	 Trigger gphdfs via ETL – The gphdfs utility can be

embedded in Python script and fired through a

standard ingestion tool like Informatica, Talend,

Appworx, etc.

Chapter 2 Data lake ingestion strategies

76

	 4.	 The LOCATION parameter of the writable external

table must have either the Hadoop cluster name or

HDFS namenode’s hostname and port details.

	 5.	 Compression support – Use compress and

compression_type arguments in writable external

table to load data in compressed format into HDFS.

	 6.	 Custom loading framework is possible that loads

group of tables (batch tables by schema or category)

using python or any other scripting language

�Data transfer from Greenplum to using gpfdist
In addition to gphdfs, the Greenplum utility gpfdist can be used to transfer

the data from the Greenplum to HDFS.

The gpfdist utility offers parallel file operations in the Greenplum

database. It can be used to move data from Greenplum segments to

Hadoop clusters via edge node. You can create a writable external table in

Greenplum using the below script.

CREATE WRITABLE EXTERNAL TABLE schemaname.tablename_ext

(LIKE schemaname.tablename)

LOCATION ('gpfdist://<edge_node_ip>:<port>/<location>')

FORMAT 'TEXT' (DELIMITER E'\x01' NULL '')

Once the table data gets exported to edge node, it needs to be pushed

to the Hadoop cluster. There are two ways to copy this file to the Hadoop

cluster –

	 1.	 Use Hadoop put command to copy file in HDFS

	 2.	 Secure copy (scp) the file to Hadoop name node

Chapter 2 Data lake ingestion strategies

77

�Ingest unstructured data into Hadoop
The technological and analytical advances sparked by machine textual

analysis prompted many businesses to research applications, leading to the

development of areas like sentiment analysis, speech mining, and predictive

analytics. The emergence of Big Data in the late 2000s led to a heightened

interest in the applications of unstructured data analytics in contemporary

fields like natural language processing, and image or video analytics.

Unstructured data is information that either does not have a pre-defined

data model or is not organized in a pre-defined manner. Unstructured

information is typically text-heavy, but may contain data such as dates,

numbers, and facts as well. This results in irregularities and ambiguities that

make it difficult to understand using traditional programs as compared to

data stored in fielded form in databases or annotated in documents.

�Apache Flume
Apache Flume is a distributed system to capture and load large volumes

of log data from different source systems to the data lake. Traditional

solutions to copy a data set securely over network from one system

to other, work only when data set is relatively small, easy and readily

available. Given the challenges of a near real-time replication, batched

loads, and volume, the urge to have a robust, flexible, and extensible tool

cannot be ignored. Flume fits the bill appropriately as a reliable system

that can transfer streaming events from different sources to HDFS.

Flume had its roots at Cloudera since 2011 and is packaged as a native

component of Hadoop stack. It is used to collect and aggregate streaming

data as events. Built upon a distributed pipeline architecture, the framework

consists a Flume agent (or multiple independent federated agents) consisting

of a channel that connects sources to sink. What flume guarantees is end-

to-end reliability by enabling transactional exchange between agents and

configurable data persistency characteristics of channels. The flume topology

can be flexibly tweaked to optimize event volume and load balancing.

Chapter 2 Data lake ingestion strategies

78

Figure 2-17 shows a simple data flow model from source to channel to

sink via Flume. Flume agent is nothing but a JVM daemon process running

on a machine.

Components –

•	 A flume event is a byte size data object, along with

optional headers as key-value pair of distinctive

information, transporting through the agent.

•	 Source is a scalable component that accepts data

from the data source and writes to the channel. It

may, optionally, have an interceptor to modify events

through tagging, filtering, or altering. Events pushed to

the channel are PUT transactions.

•	 The channel, depending on its configuration, queues the

flume events persistently as received. It helps in persisting

the events and controls fluctuations in data loads.

•	 The sink pulls the data from channel and pushes to

the target data store (could be HDFS or another flume

agent). Events pulled by sink from the channel are

TAKE transactions.

Incoming
Events

Outgoing
DataSource Sink

Flume Agent

Channel

Source Transaction SinkTransaction

Client
PUT TAKE

Figure 2-17.  Apache Flume architecture

Chapter 2 Data lake ingestion strategies

79

Data flow from source to sink is carried out using transactions which

eliminates the risk of data loss in the pipeline. Flume works best for

sources that generate streams of data at a steady rate. Source data can be

synchronous like Avro, Thrift, spool directory, HTTP, Java message service,

or asynchronous like SYSLOGTCP, SYSLOGUDP, NETCAT, or EXEC. For

synchronous sources, client can handle failures, while for asynchronous,

it cannot. Similarly, sinks can be HDFS, HBase (sync and async), Hive,

logger, Avro, Thrift, File roll, morphlineSolr, ElasticSearch, Kafka, Kite, and

more flume agents.

�Tiered architecture for convergent flow of events
A tiered framework of multiple agents can be setup to enable convergent

flow of events to multiple sinks. There can be multiple motivations behind

the tiered approach. The primary motivation is to optimize the data

volume distribution and insulate sinks from uneven data loads. Other

reasons could be to relieve sources from holding large volumes of events

for long time.

Loosely connected independent flume agents in the outermost tier

(Tier-1) hold event streams from the sources. In the subsequent tier,

sources consolidate the event streams received from preceding tier’s sinks.

The process of consolidation and aggregation continues until the last tier,

before the sinks in the innermost tier route the events to HDFS. Agent

count is maximum in the outermost tier while event volume is highest in

the innermost tier.

Figure 2-18 shows three tiers, each containing multiple flume agents

that read event streams from multiple web sources and transport data into

HDFS cluster. Each sink pushes the event stream to the source of the agent

in the successive tier. Tier-1 sources into Tier-2, which sources into Tier-3.

This presents the scenario of Consolidation.

Chapter 2 Data lake ingestion strategies

80

A tiered architecture achieves load balancing and enables a

distinguished layer between collector, storage, and aggregator agents.

�Features and design considerations

	 1.	 Channel type – Flume has three built-in channels,

namely, MEMORY, JDBC, and FILE.

	 a.	 MEMORY – events are read from source to

memory. Being a memory based operation,

event ingestion is very fast. On contrary, since

the changes captured are volatile in nature,

incidents like agents crash or hardware issue

can result into data loss. Business critical events

are not a good choice but low category logs can

be set of memory channel.

Source Channel

Source

Sink

Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel

Tier-1 Tier-2 Tier-3

HDFS

Sink

Channel

Figure 2-18.  Apace Flume tiered model

Chapter 2 Data lake ingestion strategies

81

	 i.� � You can set the event capacity using

agent.channels.c1.capacity. Java

heap space should also be increased in

accordance with the capacity.

ii.� � Use keep-alive to determine wait time

for the process that writes event into the

channel.

iii.�� � Low put and take transaction latencies

but not a cost-effective solution for a large

event

	 b.	 FILE – events are read from source and written to

files on a filesystem. Though slow, it is considered

as durable and reliable option amongst the three

channels as it uses Write Ahead Log mechanism

along with storage directory to track events in the

channel. Set the checkpointDir and dataDirs

attributes of the channel to set directories where

events are to be held.

	 c.	 JDBC – events are read and stored in Derby

database. Enables ACID support as well but acute

adoption trends due to performance issues.

	 d.	 Kafka channel – events get stored in a Kafka

topic in a cluster. This is one of the recent

integrations that can be retrofitted into multiple

scenarios:

	 i.� � Flume source and sink available – event

written to Kafka topic

ii.� � Flume source – event captured in a Kafka

topic. Integration with other applications

is use-case driven.

Chapter 2 Data lake ingestion strategies

82

iii.� � Flume sink – While Kafka captures the

events from source systems, the sink

helps in transporting events to HDFS,

HBase, or Solr.

	 2.	 Channel capacity and transaction capacity –

Channel capacity is the maximum number of

events in a channel. Transaction capacity is the

maximum number of events passed to a sink

in single transaction. Attributes capacity and

transactionCapacity are set for a channel.

	 a.	 Channel capacity must be large enough to

queue many events. It depends on the size of an

event, memory or disk size.

	 b.	 For MEMORY channel, channel capacity is

limited by RAM size.

	 c.	 For FILE, channel capacity is limited by disk size.

	 d.	 Transaction capacity depends on batch size

configured for the sinks

	 3.	 Event batch size – The transaction capacity or batch

size is the maximum number of events that can be

batched in a single transaction. It is set at the source

and sink level.

	 a.	 Set at source – number of events in a batch

written to channel

	 b.	 Set at sink – number of events captured by sink

in single transaction before flush

	 c.	 Batch size <<channel>>.batchSize must be less

than or equal to channel transaction capacity

for proper resource management.

Chapter 2 Data lake ingestion strategies

83

	 d.	 Larger the batch size at sink, faster the channels

function to free up space for more events. For a

file channel, post flush operation may be time

consuming for fat batches.

	 e.	 Best practice to have transaction capacity that

yields optimum performance. Not fixed formula

but a gradual exercise.

	 f.	 If a batch fails in between, entire batch is

replayed; which may cause duplicates at

destination

	 4.	 Channel selector (Replicator/Multiplexer) – An event

in flume, can either be replicated to all channels

or conditional-copied to selected channels. For

instance, if an event to be consumed by HDFS,

Kafka, HBase, and Spark, channels can be marked as

replicator. Replication is the default channel selector

type. If an event needs to be routed to different

channels based on a rule or context, selected

channels can be marked as multiplexer. Selector

applies before event stream reaches the channel.

agent.sources.example.selector.type = multiplexing

agent.sources.example.selector.mapping.healthy =

mychannel

agent.sources.example.selector.mapping.sick =

yourchannel

agent.sources.example.selector.default = mychannel

agent.sources.example.selector.header = someHeader

In case replicator and multiplexer do not suffice the

requirements, custom replication strategy can also

be developed.

Chapter 2 Data lake ingestion strategies

84

	 5.	 Channel provisioning – if the channels are

insufficiently provisioned in the topology, it will

create a bottleneck in the event flow, in terms of

event load per agent and resource utilization.

	 6.	 In a multi-hop flow or a tiered farm, keep note

of the hops that an event makes before landing

to destination. Note that the channels within the

agents, at a given time, act as event buffers. In case

of many hops, if any one agent goes faulty, the

impact can get cascaded until source.

	 7.	 Flume follows extensible framework. Custom flume

components are required to add their jars to FLUME_

CLASSPATH in flume-env.sh file. Other way is the

plugins.d directory under $FLUME_HOME path. If plugins

follow the defined format, flume-ng process will read

the compatible plugins from plugins.d directory.

	 8.	 Flume topology is highly dependent on use case.

For a time-series evenly generating data, flume can

work wonders. If source data pipeline is wrecked,

flume is not a good choice as it might potentially

break flume topology and cause prolonged outages.

Frequent configuration changes to flume topology

are not recommended.

	 9.	 Due to global spread out, time zones have become

indispensable piece of data ingestion strategy. All

timings and schedules must be normalized a single

time zone UTC in its standard format.

Chapter 2 Data lake ingestion strategies

85

�Conclusion
In this chapter, we discussed different approaches to bring data into a the

Hadoop data lake. The chapter kicks off with the principles of ingestion

framework and a quick brush up on basic ETL and ELT concepts. We

discussed batched ingestion concepts and its design considerations.

Under real-time processing, we explored how change data capture works

and what its key drivers are in real-world scenarios. Key takeaways from

this chapter would be two apache foundation products: sqoop and flume.

Both have proved useful in integrating structured and unstructured data in

data lake ecosystems.

In the next chapter, we’ll cover data streaming strategies, focusing

majorly on Kafka.

Chapter 2 Data lake ingestion strategies

