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CHAPTER 2

Data lake ingestion 
strategies

“If we have data, let’s look at data. If all we have are opinions, 
let’s go with mine.”

—Jim Barksdale, former CEO of Netscape

Big data strategy, as we learned, is a cost effective and analytics driven 

package of flexible, pluggable, and customized technology stacks. 

Organizations who embarked into Big Data world, realized that it’s not just 

a trend to follow but a journey to live. Big data offers an open ground of 

unprecedented challenges that demand logical and analytical exploitation 

of data-driven technologies. Early embracers who picked up their journeys 

with trivial solutions of data extraction and ingestion, accept the fact that 

conventional techniques were rather pro-relational and are not easy in the 

big data world. Traditional approaches of data storage, processing, and 

ingestion fall well short of their bandwidth to handle variety, disparity, and 

volume of data.

In the previous chapter, we had an introduction to a data lake 

architecture. It has three major layers namely data acquisition, data 

processing, and data consumption. The one that is responsible for building 

and growing the data lake is the data acquisition layer. Data acquisition 

lays the framework for data extraction from source data systems and 
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orchestration of ingestion strategies into data lake. The ingestion 

framework plays a pivotal role in data lake ecosystem by devising data as 

an asset strategy and churning out enterprise value.

The focus of this chapter will revolve around data ingestion 

approaches in the real world. We start with ingestion principles and 

discuss design considerations in detail. The concentration of the chapter 

will be high on fundamentals and not on tutoring commercial products.

�What is data ingestion?
Data ingestion framework captures data from multiple data sources and 

ingests it into big data lake. The framework securely connects to different 

sources, captures the changes, and replicates them in the data lake. The data 

ingestion framework keeps the data lake consistent with the data changes at 

the source systems; thus, making it a single station of enterprise data.

A standard ingestion framework consists of two components, 

namely, Data Collector and Data Integrator. While the data collector 

is responsible for collecting or pulling the data from a data source, the 

data integrator component takes care of ingesting the data into the data 

lake. Implementation and design of the data collector and integrator 

components can be flexible as per the big data technology stack.

Before we turn our discussion to ingestion challenges and principles, 

let us explore the operating modes of data ingestion. It can operate either 

in real-time or batch mode. By virtue of their names, real-time mode 

means that changes are applied to the data lake as soon as they happen, 

while a batched mode ingestion applies the changes in batches. However, 

it is important to note that real-time has its own share of lag between 

change event and application. For this reason, real-time can be fairly 

understood as near real-time. The factors that determine the ingestion 

operating mode are data change rate at source and volume of this change. 

Data change rate is a measure of changes occurring every hour.
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For real-time ingestion mode, a change data capture (CDC) system 

is sufficient for the ingestion requirements. The change data capture 

framework reads the changes from transaction logs that are replicated 

in the data lake. Data latency between capture and integration phases is 

very minimal. Top software vendors like Oracle, HVR, Talend, Informatica, 

Pentaho, and IBM provide data integration tools that operate in real time.

In a batched ingestion mode, changes are captured and persisted every 

defined interval of time, and then applied to data lake in chunks. Data 

latency is the time gap between the capture and integration jobs.  

Figure 2-1 illustrates the challenges of building an ingestion framework.

�Understand the data sources
Selection of data sources for data lake is imperative while enriching 

analytical acumen for a business statement. Data sources form the basis 

of the data acquisition layer of a data lake. Let us look at the variety of data 

sources that can potentially ingest data into a data lake.

Data change rate

Heterogenous data
sources

Data ingestion
frequency

Data
Ingestion
Challenges

Data fomat
(structured, semi or

unstructured)
Data Quality

Figure 2-1.  Data Ingestion challenges
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•	 OLTP systems and relational data stores – structured 

data from typical relational data stores can be ingested 

directly into a data lake.

•	 Data management systems – documents and text files 

associated with a business entity. Most of the time, 

these are semi-structured and can be parsed to fit in a 

structured format.

•	 Legacy systems – essential for historical and regulatory 

analytics. Mainframe based applications, customer 

relationship management (CRM) systems, and 

legacy ERPs can help in pattern analysis and building 

consumer profiles.

•	 Sensors and IoT devices – devices installed on 

healthcare, home, and mobile appliances and large 

machines can upload logs to a data lake at periodic 

intervals or in a secure network region. Intelligent 

and real-time analytics can help in proactive 

recommendations, building health patterns, and 

surmising meteoric activities and climatic forecast.

•	 Web content – social media platforms like Facebook, 

Twitter, LinkedIn, Instagram, and blogs accumulate 

humongous amounts of data. It may contain free text, 

images, or videos that is used to study user’s behavior, 

business focused profiles, content, and campaigns.

•	 Geographical details – data flowing from location data, 

maps, and geo-positioning systems.
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�Structured vs. Semi-structured vs.  
Unstructured data
Data serves as the primitive unit of information. At a high level, data flows 

from distinct source systems to a data lake, goes through a processing 

layer, and augments an analytical insight. This might sound quite smooth 

but what needs to be factored in is the data format. Data classification 

is a critical component of the ingestion framework. Data can be either 

structured, semi-structured, or unstructured. Depending on the structure 

of data, the processing framework can be designed effectively.

Structured data is an organized piece of information that aligns 

strongly with the relational standards. It can be searched using a structured 

query language and the result containing the data set can be retrieved. 

For example, relational databases predominantly hold structured data. 

The fact that structured data constitutes a very small chunk of global data 

cannot be denied. There is lot of information that cannot be captured in a 

structured format.

Unstructured data is the unmalleable format of data. It lacks a 

structure; thus, making basic data operations like fetch, search, and 

result consolidation quite tedious. Data sourced from complex source 

systems like web logs, multimedia files, images, emails, and documents 

are unstructured. In a data lake ecosystem, unstructured data forms a pool 

that must be wisely exploited to achieve analytic competency. Challenges 

come with the structure and volume. Documents in character format 

(text, csv, word, XML) are considered as semi-structured as they follow 

a discernable pattern and possess the ability to be parsed and stored in 

the database. Images, emails, weblogs, data feeds, sensors, and machine-

generated data from IoT devices, audio, or video files exist in binary format 

and it is not possible for structured semantics to parse this information.
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“Unstructured information represents the largest, most current, 

and fastest growing source of knowledge available to businesses and 

governments. It includes documents found on the web, plus an estimated 

80% of the information generated by enterprises around the world.” - 

Organization for the Advancement of Structured Information Standard 

(OASIS) - a global nonprofit consortium that works towards building up the 

standards for various technology tracks (https://www.oasis-open.org/).

Each of us generate a high volume of unstructured data every day. 

We are connected to the web every single hour as share data in one or 

the other way via a handful of devices. The amount of data we produce 

on social media or web portals gets proliferated to multiple downstream 

systems. Without caring much, we shop for our needs, share what we 

think, and upload files to share. By data retention norms, data never gets 

deleted but follows the standard information lifecycle management policy 

set by the organization. At the same time, let’s be aware that information 

baked inside unstructured data files can be enormously useful for data 

analysis. Figure 2-2 lists the complexities of handling unstructured data 

in the real world. Data without structure and metadata is difficult to 

comprehend and fit into pre-built models.

No structure

Data Duplication

Storage and Resource
limitations

Figure 2-2.  Unstructured data complexities
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Apache Hadoop is a proven platform that addresses the challenges of 

unstructured data in the following ways:

	 1.	 Distributed storage and distributed computing – 

Hadoop’s distributed framework favors storage and 

processing of enormous volumes of unstructured 

data.

	 2.	 Schema on read – Hadoop doesn’t require a schema 

on write for unstructured data. It is only post 

processing that analyzed data needs a schema on 

read.

	 3.	 Complex processing – Hadoop empowers the 

developer community to program complex 

algorithms for unstructured data analysis and 

leverages the power of distributed computing.

�Data ingestion framework parameters
Architecting data ingestion strategy requires in-depth understanding of 

source systems and service level agreements of ingestion framework. From 

the ingestion framework SLAs standpoint, below are the critical factors.

•	 Batch, real-time, or orchestrated – Depending on 

the transfer data size, ingestion mode can be batch 

or real time. Under batch mode, data movement will 

trigger only after a batch of definite size is ready. If 

the data change rate is defined and controllable (such 

that latency is not impacted), real-time mode can be 

chosen. For incremental change to apply, ingestion 

jobs can be orchestrated at periodic intervals.
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•	 Deployment model (cloud or on-premise) – data lake 

can be hosted on-premise as well as public cloud 

infrastructures. In recent times, due to the growing 

cost of computing and storage systems, enterprises 

have started evaluating cloud setup options. With a 

cloud hosted data lake, total cost of ownership (TCO) 

decreases substantially while return on investment 

(ROI) increases.

An ingestion strategy attains stability only if it is able enough to handle 

disparate data sources. The following aspects need to be factored in while 

understanding the source systems.

•	 Data lineage – it is a worthwhile exercise to maintain 

a catalog of the source systems and understand 

its lineage starting from data generation until the 

ingestion entry point. This piece could be fully owned 

by the data governance council and may get reviewed 

from time to time to align and cover catalog registrants 

under the ongoing compliance regulations.

•	 Data format – whether incoming data is in the form of 

data blocks or objects (semi or unstructured)

•	 Performance and data change rate – data change rate 

is defined as the size of changes occur every hour. It 

helps in selecting the appropriate ingestion tool in the 

framework.
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•	 Performance is a derivative of throughput and latency.

•	 Data location and security

•	 Whether data is located on-premise or in a public 

cloud infrastructure, network bandwidth plays an 

important role.

•	 If the data source is enclosed within a security layer, 

the ingestion framework should be enabled and 

establishment of a secure tunnel to collect data for 

ingestion should occur.

•	 Transfer data size (file compression and file splitting) – 

what would be the average and maximum size of block 

or object in a single ingestion operation?

•	 Target file format – Data from a source system needs to 

be ingested in a Hadoop compatible file format.

Table 2-1 compiles the list of file formats, their features, and scenarios 

in which they are preferred for use.
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Table 2-1.  File formats and their features

File type Features Usage

Parquet •    �Columnar data 

representation

•    Nested data structures

•    Good query performance

•    Hive supports schema evolution

•    Optimized for Cloudera Impala

•    Slower write performance

Avro •    �Row format data 

representation

•    Nested data structures

•    Stores metadata

•    �Supports file splitting and block 

compression

ORC •    �Optimized Record 

Columnar files

•    �Row format data 

representation as  

key-value pair

•    �Hybrid of row and columnar 

format

•    �Row format helps to keep 

data intact on the same node

•    �Columnar format yields 

better compression

•    Good for data query operations

•    Improved compression

•    Slow write performance

•    Schema evolution not supported

•    �Not supported by Cloudera 

Impala

SequenceFile •    �Flat files as key-value pairs •    Limited schema evolution

•    Supports block compression

•    �Used as interim files during 

MapReduce jobs

CSV or Text 

file

•    �Regular semi-structured 

files

•    Easy to be parsed

•    �No support for block 

compression

•    Schema evolution not easy

(continued)
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Why ORC is a preferred file format? ORC is a columnar storage format 

that supports optimal execution of a query through indexes which help 

in quick scanning of files. ORC supports indexes at the file level, stripe 

level, and row level. File and stripe indexes work similar to storage indexes 

from a relational perspective in that they help in quick scanning of data by 

narrowing down the scan surface area. They help in pruning out the stripes 

from scans during query execution.

Stripe indexes – An ORC file of a table is organized into stripes of 

default 64MB size. Stripe size can be configured at the table level. Each 

stripe implicitly indexes the column and holds meaningful details like 

min/max value or a dictionary for quick lookup. Some of the key ORC 

configuration parameters are listed below. Note that these parameters 

should be set at table level within TBLPROPERTIES clause.

	 1.	 orc.compress – Compression codec for ORC file

	 2.	 orc.compress.size – Size of a compression chunk

	 3.	 orc.create.index – whether or not the indexes should 

be created?

	 4.	 orc.stripe.size – Size of memory buffer (bytes) for writing

	 5.	 orc.row.index.stride – Rows between index entries

	 6.	 orc.bloom.filter.columns – BLOOM_FILTER stream 

created for each of the specified column

Table 2-1.  (continued)

File type Features Usage

JSON •    �Record structure stored as 

key-value pair

•    �No support for block 

compression

•    �Schema evolution easier than 

CSV or text file as metadata 

stored along with data
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For more details on ORC parameter, you can refer to ORC Apache 

page – https://orc.apache.org/docs/hive-config.html.

For example, ORC file storage of CUSTOMER table (Figure 2-3)

A user issues the below query. The query filters the results on “state” 

column.

SELECT ID, NAME

FROM CUSTOMER

WHERE CUSTOMER.state = 'CA';

For CUSTOMERS table, the two stripes have 10,000 rows each. The 

number of rows in a particular stripe is configurable while creating a 

table. Each stripe contains inline indexes such as min, max, and lookup/

dictionary for the data within that stripe. ORC’s predicate pushdown will 

consult these inline indexes to identify if an entire block can be skipped 

all at once. The second stripe will be discarded because its index does not 

have the value “CA” in state column.

If a column is sorted, relevant records will get confined to one area on 

disk and the other pieces will be skipped very quickly. Skipping works for 

number types and for string types. In both instances, it’s done by recording 

a min and max value inside the inline index and determining if the lookup 

ID
(min = 1, max=10000)

ID
(min = 10001, max=20000)

1
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Figure 2-3.  Stripes of CUSTOMER table
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value falls outside that range. Sorting can lead to very nice speedups, but 

there is a trade-off with the resources needed in order to facilitate the 

sorting during insertion.

ORC usage best practices

	 1.	 Hive queries must be analyzed to explore usage 

patterns and track down columns that frequently 

occur in predicates.

	 2.	 Hive tables must be timely analyzed to keep the 

statistics updated

	 3.	 Data should be distributed and sorted during 

ingestion. This will help in effective resource 

management during query processing.

	 4.	 If the filtering column in a query has high cardinality, 

then lower stripe size works well. If the cardinality  

is low, then a higher stripe size is preferred.

	 5.	 Starting hive 1.2, support for bloom filters was 

included to ORC semantics to provide granular 

filtering. It is used on sorted columns.

The ORC file format is supported by Hive, Pig, Apache Nifi, Pig, Spark, 

and Presto. On the adoption fronts, Facebook and Yahoo use ORC file 

storage format in production and have observed significant performance 

compared to other formats.

�ETL vs. ELT
It would be an understatement that Extraction, Transformation, and Loading 

(ETL) protocol under-sufficed the data motion requirements for traditional 

data warehouses. It has been a standard de-facto process since the evolution 

of data movement strategies. However, with the next-gen data warehousing 

strategies and big data trends, the ETL approach tends to require tweaks.
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Contrary to the traditional ETL approach, the data lake ingestion 

strategy adopts the ELT approach. With this approach, data gets loaded 

directly into the data lake after being collected. Transformation lies in the 

purview of the consumption or analytical layer (Figure 2-4).

Data lake is ideated to hold data from a variety of sources in its rawest 

form. A thin data scrubbing layer may optionally exist to clean raw data 

before it gets ingested into the data lake and consumed by analytical 

models. However, having a wide layer of data transformation is not 

recommended as it may restrict the surface area of data exploration, 

thereby narrowing down the data agility. Other rationale behind the ELT 

approach is the performance factor. Running transformation logic on huge 

volumes of data may foster a latency between the data source and data 

lake. The transformation layer can instead be flexed down to a curated 

layer to empower analytical models to retrofit the data stance. Figure 2-5 

shows the data movement in an ELT model.

Transform

Data LakeData Source

LoadExtract

Figure 2-4.  Data agility is reduced in a typical ETL process

Chapter 2  Data lake ingestion strategies



47

Other factors that stand in support of ELT in data lakes are cost 

effectiveness and maintenance. Since the time data lake concept has 

caught all the eyes of data world, ELT has been the most trusted approach.

�Big Data Integration with Data Lake
Data is a ubiquitous entity. Until the big data trend acquired the waves, it 

was the relational databases who held the system of records in a structured 

format. Although relational data store vendors are finding ways to address 

unstructured data, adoption is majorly driven by factors like cost, ease of 

processing, and use-cases.

Data lakes are designed to complement contemporary data 

warehousing systems by empowering analytical models to churn out 

the real value of “data” irrespective of its format. In this chapter, we 

will cover techniques and best practices of bringing structured as well 

as unstructured data into data lake. This section focuses on bringing 

structured data into data lake. We will walkthrough ingestion concepts, 

best practices, and tools and technologies used in the process.

Data LakeData Source

Load

Extract

Transformations

Analytics

Figure 2-5.  Data agility remains intact in a typical ELT process
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�Hadoop Distributed File System (HDFS)
Although we assume the readers of this book to be proficient with Hadoop 

concepts and HDFS, but to maintain the logical flow of concepts, let us get 

a high-level overview of HDFS.

The Hadoop Distributed File System constitutes a layer of abstraction 

on top of POSIX (or like) file system. During a write operation, a file is 

split into small blocks and apparently replicated across the cluster. The 

replication happens transparently within the cluster while the replicas 

cannot be distinctly accessed. Replication ensures fault tolerance and 

resiliency. Whenever a file gets processed in the cluster, all its replicas are 

processed in parallel; thus, bettering the computational performance and 

scalability.

The hdfs dfs command-line utility can be used to issue the file system 

commands in the Hortonworks distribution of Hadoop. In addition to this 

utility, you can also use Hadoop’s web interface, WebHDFS REST API, or 

Hue to access the HDFS cluster.

hdfs dfs [GENERIC_OPTIONS] [COMMAND_OPTIONS]

	 1.	 Shell commands are similar to common Linux file 

system commands such as ls, mkdir, cat

	 2.	 Help commands –

	 a.	 $ hdfs dfs

	 b.	 $ hdfs dfs -help

	 c.	 $ hdfs dfs -usage <shell command>

	 3.	 Directory commands like cd and pwd not supported 

in HDFS.

Chapter 2  Data lake ingestion strategies
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�Copy files directly into HDFS
One of the simplest methods to bring data into Hadoop is to copy the files 

from local to HDFS. If there are bunch of csv spreadsheets, JSON, or raw 

text files on the local system, you can copy the files directly into HDFS 

using put command.

$ hdfs dfs mkdir /user/hdfs/sales_2017

Copies sales.csv from local to HDFS cluster

$ hdfs dfs -put sales_Q1.csv sales_2017

$ hdfs dfs -put sales_Q2.csv sales_2017

List the cluster files

$ hdfs dfs -ls /user/hdfs

Once the file is available in the Hadoop cluster, it can be consumed 

by Hadoop processing layers like hive data store, pig script, mapreduce 

custom programs or spark engine.

�Batched data ingestion
In simple terms, batch is a frequency based incremental capture that 

kicks off as per the preset schedule. For most of the ETL frameworks, the 

implementation of the “extract” phase works on similar principles. Data 

collector fires a SELECT query (also known as filter query) on the source 

to pull incremental records or full extracts. Performance of the filter query 

determines how efficient a data collector is. The query-based approach to 

extract and load data is easy to implement with minimal failures.
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From a relational data source, data can be extracted using the filter 

query by following either of the techniques listed below.

•	 Change Track flag – if each changed record (insert/

update/delete) on the source database can be flagged, 

the filter query can capture just the flagged records 

from the source table.

•	 Primary key will be required to merge the changes 

at the target

•	 If primary key exists on target

•	 Delete the existing record

•	 Insert the fresh record from changed data set

•	 If primary key doesn’t exist on target

•	 Insert the record from changed data set

•	 If the target table is modeled as type 2 SCD (slowly 

changed dimension), all changed records can 

be directly inserted to target table. A timestamp 

attribute or transaction id can be maintained on 

target to trace change history of a primary key.

•	 Incremental extraction – the filter query pulls the 

differential data based on a column that can help in 

identifying changes in the source table. It can be a 

timestamp attribute or even a serialized id column.

•	 To apply the changes, primary key is a must

•	 If PK exists, delete old and insert the new record

•	 If PK doesn’t exist, insert the new record

Chapter 2  Data lake ingestion strategies



51

•	 Incremental extraction frequency – from the data 

consistency perspective, it is important to be aware 

when the source table is active for transactions and 

what is data change rate. If the change rate is high, 

incremental job should be periodically orchestrated.

•	 Full extraction – if the source database table is not 

very large and change frequency is low, target table 

can undergo full refresh every time the ETL runs. This 

ensures data consistency between source and target 

until source data gets modified. For source tables 

with master data and configuration data, full refresh 

approach can be followed.

Once captured from the source via filter query, the data extract needs 

to be staged on the edge node or ETL server, before its gets merged into 

Hadoop. This brings up the need for an additional storage system prior 

to the Hadoop cluster. The dual write approach adds to the latency and 

brings inconsistency in data lake.

�Challenges and design considerations
An organizational data lake deals with all formats of data. Data, whether 

structured or unstructured, struggles with mutable data on Hadoop. 

Hadoop, being a distributed system relies on concurrency for functionality 

but dealing with mutability and concurrency could be meaty challenge. 

The ingestion framework must ensure that only one process updates the 

mutable object at a given time and avoids dirty read problems.

Other problems include datatype mismatch between source systems 

and hives, precision field handling, special character handling and 

efficient transfer of data with table size varying from Kilobyte (KB) to 

Terabyte (TB).
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�Design considerations
The issues discussed above are common in the target system, namely 

Hadoop data lake. The design considerations discussed in this section 

must be practiced on Hadoop objects.

	 1.	 Table partitioning – Splitting the data into small 

manageable chunks provides better control in 

terms of resource consumption and data analysis. 

Partitioning strategy should factor in the following 

parameters –

	 a.	 Low-cardinality columns

	 b.	 Frequently used in joins and query predicates

	 c.	 Columns that can create interval based 

partitions

	 2.	 File storage format – ORC file storage format 

gives better compression compared to other file 

formats. In addition, it also stores index headers for 

optimized read access from files.

	 3.	 Full load or incremental - Full load integration 

should be practiced if change data capture is not 

possible. Data size and refresh frequency must be 

kept in mind while planning full load for objects.

	 4.	 Change merge strategy – If the target landing table 

is partitioned, then the changes can be tagged by 

table and the most recent partition. During the 

exchange partition process, the recent partition can 

be compared against the “change” data set to merge 

the changes. Figure 2-5 shows the process flow of 

strategy to merge change using exchange partition 

for partitioned hive tables.
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Let us consider a simple case of merging the changes using Piglatin. 

We have an interval partitioned hive table. The below code piece will show 

how to merge incremental changes from source data into a hive partition.

---sample data in a hive partition---

[bda@datalake sample-merge]$ cat hive_part4.txt

"20001""delhi"

"20002""mumbai"

"20003""bangalore"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"

"20010""chandigarh"

Changes are captured via a change capture tool. The changed data 

set has a delimiter “ctrl A”. Below is the change dataset that needs to be 

merged with most recent partition in hive table.

[bda@datalake sample-merge]$ cat change_dataset.txt

"I"^A"20089"^A"1"^A"2014-09-04 12:38:08.000"^A"20015"^A"noida"

Exchange 
Partition

Prepare final data set
with merged changes 

P1

P2

P3

P4

#Changes

P4

1

Change capture

2 Pull most recent partition for Compare and Merge

3 4

Data source 
Hive Table with

partitions 

Figure 2-6.  Merge changes through exchange partition
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"D"^A"20089"^A"2"^A"2014-09-04 12:38:08.000"^A"20003"^A\N

"I"^A"20089"^A"3"^A"2014-09-04 12:38:08.000"^A"20003"^A"bengaluru"

"D"^A"20089"^A"5"^A"2014-09-04 12:38:08.000"^A"20001"^A\N

Pig script to merge the changes with original file.

A = LOAD '/user/bda/merge_change/hive_p4_merged_set.txt'

using PigStorage('\u0001')

AS (

opcode:chararray

, seqno:chararray

, row_id:chararray

, commit_timestamp:chararray

, id:chararray

, place:chararray);

B = GROUP A BY id;

C = foreach B {

D = order A by seqno, row_id desc;

top = limit D 1;

generate flatten(top);

};

Check and verify the changes in main file. Note that [id = 20001] has been 

deleted, [id=20003] has been updated, and [id=20015] has been inserted.

[bda@datalake sample-merge]$ cat hive_p4_merged_set.txt

"20002""mumbai"

"20003""bengaluru"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"
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"20010""chandigarh"

"20015""noida"

Let’s take another use case to demonstrate change-merge using Spark. 

We’ll work with a main data set and changed data set. Master Data in 

Target Location

val main_data = spark.table(t.tablename).filter(cond) //filter 

on the specific partition

We’ll create two expressions using primary keys in the below fashion.

•	 Combining primary keys – pk1 AND pk2 … pkn

•	 Combining primary keys having null – pk1 is null AND 

pk2 is null … pkn is null

Below is the sample of Main Dataset A

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10001 0

2 Shubham 18929 10002 0

3 Surya 12931 10003 0

4 Arun 12313 10004 0

5 Rita 12930 10005 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

Below dataset represents the incremental changes captured via CDC 

mechanism
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P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10020 1

2 Shubham 18929 10022 1

3 Surya 453202 10034 2

4 Tarun 489503 10098 0

5 Pranav 129789 10099 2

Here P.K. is the primary key column, TIME_ID is the defined value 

for timestamps and DELETE_FLAG is the value where 0 is termed as New 

Insert, 1 as Delete and 2 as an Update. The following spark code will merge 

the data and store it as a temporary view

main_data.as("m").join(broadcast(incr_data.as("k").

filter(cond)), expr(str1), "left_outer").filter(str2).

select("m.*").union(incr_data.filter("del_flag != 1")).createOr

ReplaceTempView(mergedTable)

Figure 2-7 shows the merge workflow process.

SET B

COMPACTION

COMPACTED

MERGING

UPDATED

SET B*
SET A

RESULT
SET

Figure 2-7.  Merge operation workflow process
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Below is the data set produced after merge.

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 129789 10099 0

3 Surya 453202 10034 0

4 Arun 12313 10035 0

5 Rita 12930 10036 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

11 Tarun 489503 10098 0

�Commercial ETL tools
While the underlying principle of most of the 3rd party commercial ETL 

tools remain as discussed above, implementations can be different. For 

example, Informatica PowerCenter stores metadata in an Oracle database 

repository while Talend generates java code to do the job. Pentaho, on the 

other hand, provides a user-friendly interface.

Because data lake is a new opportunity, data integration software 

vendors have started complementing their ETL products with Hadoop 

centric capabilities. Modern-day ETL tools are flexible, platform agnostic, and 

capable of optimized extraction, through reusable code generation, and much 

more.

The 2017 Gartner magic quadrant (Figure 2-8) compares the data 

integration tools and positions Informatica as a leader.
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�Real-time ingestion
A batched data ingestion technique is fool-proof as far as data sanity 

checks are concerned. However, it fails to paint the real-time picture of 

the business due to the lag associated with it. To enhance the business 

readiness of analytical frameworks, it is expedient to process a business 

transaction as soon as it occurs. In (near) real-time processing, changes 

are captured either at very low latency or in real-time. A log-based real-

time processing exercise is known as change data capture.
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Figure 2-8.  Gartner’s magic quadrant for commercial data 
integration products. https://www.informatica.com/in/data-
integration-magic-quadrant.html
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Change data capture refers to the log mining process to capture only 

the changed data (insert, update, delete) from the data source transaction 

logs. A real-time or micro-batch CDC detects the change events by 

scanning the database logs as they occur. With minimal access to enterprise 

sources, CDC incurs no load on source tables; thereby minimizing latency 

and ensuring consistency between source and target systems.

So, why CDC? As we discussed in the last section, conventional 

ETL tools use SQL to extract and batch the incremental data. Query 

performance may be impacted due to continuous growth in source 

database’s volume and its concurrent workload. In addition, the query 

incurs its portion of the workload on the source system.

Figure 2-9 shows a change data capture workflow between source and 

target systems.

As part of business intelligence and data compliance initiatives, CDC 

helps in aligning with data-as-a-service principles by providing master 

data management capabilities and enabling quicker data quality checks.

Summing up the points, the CDC ingestion pipeline helps in –

•	 Eliminating the need to run SQL queries on source 

system. Incurs no load overhead on a transactional 

source system.

•	 Achieves near real-time replication between source 

and target

Capture

Scan DB
Transaction logs
to capture
changes

Transform as per
data type
compatibility

Detect uniqueness
based on Source
PK

Extract Apply

Figure 2-9.  Change Data capture workflow
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•	 Log mining helps in capturing granular data operations 

like truncates as well

�CDC design considerations
To design a CDC ingestion pipeline, the source database must be enabled 

for logging. All relational databases follow a roll forward approach by 

persisting the changes in logs. Each and every event is persistently logged 

with a change id (or system change number) in a log and will never get 

purged. An Oracle database allows enabling supplement logging at the 

table level. Similarly, SQL Server allows logging at the database level. 

Without logging, transaction logs cannot be mined to capture the changes.

The tables at the source database must hold a primary key for 

replication. It helps the capture job in establishing uniqueness of a record 

in the changed data set. A source PK ensures the changes are applied to 

the correct record on target. If the source table doesn’t have primary key 

defined, CDC job can designate a composite primary key to uniquely 

identify a record in the change table.

It would be a terrible design to establish uniqueness based on a unique 

constraint as it allows multiple NULLs in a column. In the apply phase, a 

change record with null identity will fail to pick a matching null record at 

the target.

Trigger based CDC –Another method of setting up change-data-

capture is through triggers at the table level. A trigger helps in capturing 

row changes in a separate table synchronously, which apparently gets 

replicated to the target. Either the entire record is captured or just the 

changed attributes along with the primary key. The downside of this 

approach is that it induces overhead of one more transaction before the 

original transaction is deemed complete.
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This method usually works in two scenarios –

•	 Logging not enabled on the source database

•	 Reading transaction logs is a tedious task due to its 

binary format

•	 T-logs not available for scanning due to software 

restriction or small retention time

So, should you always prefer CDC over batched ingestion? No. Real-

time integration or CDC should be set up only when business demands it. 

It is a feature to be contemplated based on multiple factors like business’s 

service-level agreement, change size, and target readiness.

�Example of CDC pipeline: Databus, LinkedIn’s 
open-source solution
Databus, a real-time change data capture system, was developed by 

LinkedIn in the year 2006. In 2013, LinkedIn released the open-source 

version of Databus. Since its development, Databus has been an essential 

component of the data processing framework at LinkedIn. Databus 

provides a real-time data replication mechanism with the ability to handle 

high throughput and latency in milliseconds. The Databus source code is 

available at its git repo at https://github.com/linkedin/databus.

Databus is a source agnostic framework that scales seamlessly to 

multiple consumers, while the transactional sources are still operational. 

The source code includes the adaptors for different relational sources 

like Oracle and MySQL. Figure 2-10 shows the working components of 

Databus.
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Databus works with these three most important pieces – relays, 

bootstrap, and client library. At a high level, the following list outlines the 

steps of Databus workflow.

•	 Relay is responsible for pulling the most recent 

committed transactions from the source

•	 Relays are implemented through tungsten 

replicator

•	 Relay stores the changes in logs or cache in compressed 

format

•	 Consumer pulls the changes from relay

•	 Bootstrap component – a snapshot of data source on 

a temporary instance. It is consistent with the changes 

captured by Relay. (Refer to Figure 2-11)

Primary
DB

Updates

Standardi-
zation

Search
Index

Data Change Events on Databus

Graph
Index

Read
Replicas

Figure 2-10.  Databus component diagram. Source: https://
engineering.linkedin.com/data-replication/open-sourcing-
databus-linkedins-low-latency-change-data-capture-system
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•	 If any consumer falls behind and can’t find the 

changes in relay, bootstrap component transforms 

and packages the changes to the consumer

•	 A new consumer, with the help of client library, can 

apply all the changes from bootstrap component 

until a time. Client library will point the consumer 

to Relay to continue pulling most recent changes

Figure 2-12 branches out the benefits of LinkedIn’s Databus solution.

Source-agnostic

Low latency
consumption

Scalable,
reliable and high

available

Maintains
commit order of

the source

ACID properties
preserved

Databus

Figure 2-12.  Linkedin’s Databus differentiators

Relay LogWriter Log Storage

LogApplier
Snapshot

Storage

Consolidated changes

Consistent Snapshot

Figure 2-11.  Bootstrap component in Databus
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�Apache Sqoop
Sqoop or “SQL to Hadoop” has been one of the top Apache projects that 

addresses the data integration requirements of Hadoop. It is a native 

component of the HDFS layer that allows bi-directional “batched” flow 

of data from the Hadoop distributed file system. Not just the users can 

automate data transfer between relational databases and Hadoop, but a 

reverse operation empowers enterprise data warehouses to augment their 

consumption layer with map-reduced data from data lake.

Apache Sqoop is available in two versions – sqoop 1 and sqoop 2.

�Sqoop 1
The very first version of Sqoop was introduced in 2009. In August 2011, the 

project moved under Apache and quickly, Sqoop became one of the most 

sought-after ingestion tools.

Connectors are the motivation behind the working of Sqoop 1. The 

JDBC based connectors to different source systems are responsible for 

deriving metadata of source objects and data transfer. Let us list down the 

key highlights of Sqoop:

•	 Java based utility (web interface in Sqoop2) that 

spawns Map jobs from MapReduce engine to store data 

in HDFS

•	 Provides full extract as well as incremental import 

mode support

•	 Runs on HDFS cluster and can populate tables in Hive, 

HBase

•	 Can establish a data integration layer between NoSQL 

and HDFS
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•	 Can be integrated with Oozie to schedule import/

export tasks

•	 Supports connectors to multiple relational databases 

like Oracle, SQL Server, MySQL

�Sqoop 2
Sqoop2 succeeded sqoop with a major focus on optimizing data transfer, 

easing of using extension framework, and ensuring security. Sqoop2 works 

on client-server architecture (service-based model) in which the server 

acts as the host for two critical components, the connectors and the jobs.

Sqoop2 features are as follows–

•	 Sqoop 2 can act as a generic data transfer service 

between any-to-any systems.

•	 Sqoop 2 comes with a web interface for better 

interactivity. Command line utility still works. Sqoop 

2 web interface uses REST services running on sqoop 

server. It helps in easy integration with Oozie and other 

frameworks.

•	 Sqoop 2 employs both mapper and reducer jobs during 

data transfer activity. Mapper jobs extract the data, 

while the reducer operation transforms and loads the 

data into the target.

•	 Connectors will be setup on Sqoop 2 server which 

requires connection details to the source and targets. 

Role-based access to connection objects mitigates 

the risk of unauthorized access on source and target 

systems.
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•	 The metadata repository stores connections and jobs. 

Connectors register metadata on the sqoop server to allow 

the connection to the source and the creation of jobs.

•	 The connector consists of partitioning API (create splits 

and enabled parallelism), Extract API (Mappers), and 

Loading API (Reducers)

Figure 2-13 differentiates Sqoop1 and Sqoop2 in terms of components 

at sqoop processing layer.

�How Sqoop works?
Sqoop adopts quite a simple approach to extract data from a relational 

database. In a nutshell, it builds up an SQL query that runs at the source to 

capture the source data, which later gets ingested into Hadoop. Let us look 

at the internals of Sqoop.

Sqoop leverages mapper jobs of MapReduce processing layer in 

Hadoop, to extract and ingest data into HDFS. By default, a sqoop job has 

four mappers; this number is configurable though. Each of these mappers 

is given a query to extract data from the source system. Query for a mapper 
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Figure 2-13.  Sqoop 1 vs Sqoop2
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is build using a split rule. As per the split rule, the values of --split-by 

column must be equally distributed to each mapper. This implies that 

--split-by column should be a primary key. The entire range of PK is 

equally sliced for the mappers. Once the mapper jobs capture source data, 

either it is dumped in HDFS storage or loaded into hive tables.

Figure 2-14 demonstrates the primary key split mechanism.

�Sqoop design considerations
Below are the key factors that can help in designing sqoop tasks effectively.

	 1.	 Specify number of mappers in --num-mappers [n] 

argument

	 2.	 Number of mappers

	 a.	 Note that mappers run in parallel within 

Hadoop, just like parallel queries

	 b.	 Large number of mappers might increase the 

load on source database. Decision should be 

taken based on size of the table and workload 

on the source database

min

Mapper-1 Mapper-2 Mapper-3 Mapper-4

--split-by [column]

Split-1 Split-2 Split-3 Split-4

max

PK  range

Figure 2-14.  Sqoop split mechanism
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	 c.	 Depends upon –

	 i.� � Handling of concurrent queries in the 

source database

ii.� � Varies by table, split configuration, and 

run time

	 3.	 If the source table cannot be split on a column, use 

--autoreset-to-one-mapper argument to perform 

unsplit full extract using single mapper

	 4.	 If the source table has all character columns with or 

without a defined primary key, we can have go with 

the below approaches –

	 a.	 Add surrogate key as primary key and use it for 

splits

	 b.	 Create manual data partitions and run multiple 

sqoop jobs with one mapper for each partition. 

This may cause data skewness and jobs will run 

for irregular durations depending upon the data 

volume per split

	 c.	 Character based key column can be used as 

--split-by column as usual, if the column has –

	 i.� � Unique values (or a partitioning key like 

location, gender)

ii.�  Integer values that can be implicitly type casted

	 5.	 Sparse split-by column

	 a.	 Use --boundary-query to create splits

	 b.	 It works similar to retrieving split size from 

another lookup table
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	 c.	 For text attributes, set

-Dorg.apache.sqoop.splitter.allow_text_

splitter=true

	 6.	 Export data subsets

	 a.	 If only subset of columns is required from the 

source table, specify column list in --columns 

argument.

	 i.� � For example, --columns “orderId, product, 

sales”

	 b.	 If limited rows are required to be “sqooped”, 

specify --where clause with the predicate 

clause.

	 i.  For example, --where “sales > 1000”

	 c.	 If result of a structured query needs to be 

imported, use --query clause.

	 i.� � For example, --query ‘select orderId, 

product, sales from orders where 

sales>1000’

	 7.	 Good practice to stage data in a hive table using 

--hive-import

	 a.	 If table exists, data gets appended. Data can be 

overwritten using --hive-overwrite argument to 

indicate full refresh of the table

	 b.	 If table doesn’t exist, it gets created with the 

data

	 c.	 Use --hive-partition-key and --hive-

partition-value attributes to create partitions 

on a column key from the import
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	 d.	 By default, data load is append in nature. Data 

load approach can be incremental by

	 e.	 Delimiters can be handled through either of the 

below ways –

	 i.� � Specify --hive-drop-import-delims to 

remove delimiters during import process

ii.� � Specify --hive-delims-replacement 

to replace delimiters with an alternate 

character

	 8.	 Connectivity – ensure source database connectivity 

from the sqoop nodes

	 a.	 Create and maintain a dedicated user at source 

with required access permissions

	 9.	 Always prefix table name with the schema name as 

[schema].[table name]

	 a.	 Supply table name in upper case

	 10.	 Connectors – common (JDBC) and direct (source 

specific)

	 a.	 Direct connector yields better performance

	 b.	 Use --direct mode argument with MySQL, 

PostgreSQL, and Oracle

	 11.	 Use --batch argument to batch insert statements 

during export

	 a.	 Uses JDBC batch API

	 b.	 Native properties of database (like locking, 

query size) apply
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	 c.	 Sqoop.export.records.per.statement 

(10) – collates multiple rows in a single insert 

statement

	 d.	 Sqoop.export.statements.per.transaction 

(10) – number of inserts in a transaction

	 12.	 Approaches to secure Sqoop jobs

	 a.	 For secure data transfer, use useSSL=true and 

requireSSL flags

	 b.	 Enable Kerberos authentication

	 13.	 You can even create a Sqoop Spark job to enhance 

sqoop job performance

	 a.	 MapReduce engine might get slow with 

increased number of splits

	 b.	 No changes to the connectors. Enables 

pluggable processing engine

	 c.	 Spark job execution –

	 i.� � Data splits are converted to Resilient 

Distributed Dataset (RDD)

ii.� � Extract API reads records, while Load API 

writes data

�Native ingestion utilities
Ever since the Hadoop ecosystem reached a thoughtful stage, the tech 

stack has been able to provide extremely flexibility to implementers 

and practitioners. The big data ecosystem, in itself, comprises multiple 

pluggable components, which in turn, opens up a wide space for 

exploration and discovery. Ingestion patterns have evolved from tightly 

coupled utilities to standard and generic frameworks.

Chapter 2  Data lake ingestion strategies



72

Many of the database software vendors who are planning their move to 

data lake, have developed home-grown utilities to facilitate transfer of its 

own data to Hadoop. What differentiates these native utilities from generic 

tools is the deep expertise in data placement strategy and the ability to 

capitalize on database architecture. In this section, we will cover utilities 

provided by the Oracle database and Greenplum to load data into HDFS.

�Oracle copyToBDA
The copy to BDA utility helps in loading Oracle database tables to Hadoop 

by dumping the table data in Data Pump format and copying them into 

HDFS. The utility serves a full extract and load operation to Hadoop. If the 

data at the source changes, the utility must be rerun to refresh the data 

pump files. Once the data pump files are available in Hadoop, data can be 

accessed through Hive queries.

Note that the utility works on Oracle Big Data stack comprising 

Oracle Exadata and Oracle Big Data appliance, preferably connected via 

Infiniband network. It is licensed under Oracle Big Data SQL.

Under the hood, the utility uses ORACLE_DATAPUMP access driver and 

Hadoop client on Exadata to transfer the data. Figure 2-15 shows the 

workflow of the CopyToBDA utility.

Additional notes –

	 1.	 Copy to BDA utility works well for static tables 

whose data change rate is not frequent. Reason 

being it doesn’t allow the continuous refresh 

between source data and target.

Create database
directory for
data pump

Create external
table in Oracle to
dump table data

Copy the file to
Hadoop cluster

Create Hive
external table in

Hadoop

Figure 2-15.  CopyToBDA utility workflow
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	 2.	 If the table size is large, data can be dumped in 

multiple .dmp files

	 3.	 For a Hive external table to access the dump files 

and prepare the result set, specify appropriate 

SerDe, InputFormat and OutputFormat

	 a.	 SERDE 'oracle.Hadoop.hive.datapump.

DPSerDe'

	 b.	 INPUTFORMAT ‘oracle.Hadoop.hive.datapump.

DPInputFormat’

	 c.	 OUTPUTFORMAT ‘org.apache.Hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat’

�Greenplum gphdfs utility
Greenplum offers the gphdfs protocol to enable batched data transfer 

operations between the Greenplum and Hadoop clusters. For Greenplum 

as a source, the utility has been a de-facto mechanism for data movement 

as it fully exploits the MPP capability of the database. On the target side, 

it can work with various flavors of Hadoop like Cloudera, Hortonworks, 

MapR, Pivotal HD, and Greenplum HD.

The gphdfs utility must be setup on all segment nodes of a Greenplum 

cluster. During a data transfer operation, all segments concurrently 

push the local copies of data splits to the Hadoop cluster. The number 

of segment nodes in the Greenplum cluster measure the degree of 

parallelism of data transfer. Data distribution on segments plays a key role 

in determining the effort at a segment level process. If a table is unevenly 

distributed on the cluster, the gphdfs processes will have an irregular split 

size, which will impact the performance of the data ingestion process.
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The utility must be installed on each of the segment nodes. Installation 

steps are as follows:

	 1.	 Create repo file using

wget -nv http://public-repo-1.hortonworks.com/HDP/

centos7/2.x/updates/2.6.1.0/hdp.repo

	 2.	 Install the libraries using YUM

yum install Hadoop Hadoop-hdfs Hadoop-libhdfs Hadoop-

yarn Hadoop-mapreduce Hadoop-client openssl -y

	 3.	 Set the Hadoop configuration parameters

	 a.	 gpconfig -c gp_Hadoop_home -v " '/usr/

hdp/2.6.1.0-129'”

	 b.	 gpconfig -c gp_Hadoop_target_version -v 

"'hdp2'"

	 c.	 Set java home and Hadoop home

Figure 2-16 demonstrates a schematic of a the gphdfs utility.
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Figure 2-16.  How GPHDFS utility works
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Design considerations

	 1.	 JVM and gphdfs – The gphdfs protocol uses JVM 

on each segment host to access and write data into 

HDFS. While the writable external table is created 

on segment host and accessed via gphdfs, each 

segment instance initializes the JVM process with 

1GB of memory.

In case of high workloads during reading and 

writing multiple tables at the same time, JVM Heap 

memory issue might occur. You can decrease the 

value of the parameter GP_JAVA_OPT in $GPHOME/

lib/Hadoop/Hadoop_env.sh from 1GB to 500MB.

	 2.	 Kerberos and gphdfs – The gphdfs protocol supports 

Kerberos authentication for Hadoop cluster. 

Kerberos authentication details are required to be 

updated in below files –

•	 Yarn-site.xml

•	 Core-site.xml

•	 Hdfs-site.xml

In addition, the /etc/krb5.conf must be present 

in the Greenplum cluster. In case you are facing 

GSSAPI errors while accessing HDFS, install the Java 

Cryptography extension (JCE) on Greenplum nodes 

($JAVA_HOME/jre/lib/security).

	 3.	 Trigger gphdfs via ETL – The gphdfs utility can be 

embedded in Python script and fired through a 

standard ingestion tool like Informatica, Talend, 

Appworx, etc.
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	 4.	 The LOCATION parameter of the writable external 

table must have either the Hadoop cluster name or 

HDFS namenode’s hostname and port details.

	 5.	 Compression support – Use compress and 

compression_type arguments in writable external 

table to load data in compressed format into HDFS.

	 6.	 Custom loading framework is possible that loads 

group of tables (batch tables by schema or category) 

using python or any other scripting language

�Data transfer from Greenplum to using gpfdist
In addition to gphdfs, the Greenplum utility gpfdist can be used to transfer 

the data from the Greenplum to HDFS.

The gpfdist utility offers parallel file operations in the Greenplum 

database. It can be used to move data from Greenplum segments to 

Hadoop clusters via edge node. You can create a writable external table in 

Greenplum using the below script.

CREATE WRITABLE EXTERNAL TABLE schemaname.tablename_ext

(LIKE schemaname.tablename)

LOCATION ('gpfdist://<edge_node_ip>:<port>/<location>')

FORMAT 'TEXT' (DELIMITER E'\x01' NULL '')

Once the table data gets exported to edge node, it needs to be pushed 

to the Hadoop cluster. There are two ways to copy this file to the Hadoop 

cluster –

	 1.	 Use Hadoop put command to copy file in HDFS

	 2.	 Secure copy (scp) the file to Hadoop name node
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�Ingest unstructured data into Hadoop
The technological and analytical advances sparked by machine textual 

analysis prompted many businesses to research applications, leading to the 

development of areas like sentiment analysis, speech mining, and predictive 

analytics. The emergence of Big Data in the late 2000s led to a heightened 

interest in the applications of unstructured data analytics in contemporary 

fields like natural language processing, and image or video analytics.

Unstructured data is information that either does not have a pre-defined 

data model or is not organized in a pre-defined manner. Unstructured 

information is typically text-heavy, but may contain data such as dates, 

numbers, and facts as well. This results in irregularities and ambiguities that 

make it difficult to understand using traditional programs as compared to 

data stored in fielded form in databases or annotated in documents.

�Apache Flume
Apache Flume is a distributed system to capture and load large volumes 

of log data from different source systems to the data lake. Traditional 

solutions to copy a data set securely over network from one system 

to other, work only when data set is relatively small, easy and readily 

available. Given the challenges of a near real-time replication, batched 

loads, and volume, the urge to have a robust, flexible, and extensible tool 

cannot be ignored. Flume fits the bill appropriately as a reliable system 

that can transfer streaming events from different sources to HDFS.

Flume had its roots at Cloudera since 2011 and is packaged as a native 

component of Hadoop stack. It is used to collect and aggregate streaming 

data as events. Built upon a distributed pipeline architecture, the framework 

consists a Flume agent (or multiple independent federated agents) consisting 

of a channel that connects sources to sink. What flume guarantees is end-

to-end reliability by enabling transactional exchange between agents and 

configurable data persistency characteristics of channels. The flume topology 

can be flexibly tweaked to optimize event volume and load balancing.
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Figure 2-17 shows a simple data flow model from source to channel to 

sink via Flume. Flume agent is nothing but a JVM daemon process running 

on a machine.

Components –

•	 A flume event is a byte size data object, along with 

optional headers as key-value pair of distinctive 

information, transporting through the agent.

•	 Source is a scalable component that accepts data 

from the data source and writes to the channel. It 

may, optionally, have an interceptor to modify events 

through tagging, filtering, or altering. Events pushed to 

the channel are PUT transactions.

•	 The channel, depending on its configuration, queues the 

flume events persistently as received. It helps in persisting 

the events and controls fluctuations in data loads.

•	 The sink pulls the data from channel and pushes to 

the target data store (could be HDFS or another flume 

agent). Events pulled by sink from the channel are 

TAKE transactions.

Incoming 
Events

Outgoing
DataSource Sink

Flume Agent

Channel

Source Transaction SinkTransaction

Client
PUT TAKE

Figure 2-17.  Apache Flume architecture
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Data flow from source to sink is carried out using transactions which 

eliminates the risk of data loss in the pipeline. Flume works best for 

sources that generate streams of data at a steady rate. Source data can be 

synchronous like Avro, Thrift, spool directory, HTTP, Java message service, 

or asynchronous like SYSLOGTCP, SYSLOGUDP, NETCAT, or EXEC. For 

synchronous sources, client can handle failures, while for asynchronous, 

it cannot. Similarly, sinks can be HDFS, HBase (sync and async), Hive, 

logger, Avro, Thrift, File roll, morphlineSolr, ElasticSearch, Kafka, Kite, and 

more flume agents.

�Tiered architecture for convergent flow of events
A tiered framework of multiple agents can be setup to enable convergent 

flow of events to multiple sinks. There can be multiple motivations behind 

the tiered approach. The primary motivation is to optimize the data 

volume distribution and insulate sinks from uneven data loads. Other 

reasons could be to relieve sources from holding large volumes of events 

for long time.

Loosely connected independent flume agents in the outermost tier 

(Tier-1) hold event streams from the sources. In the subsequent tier, 

sources consolidate the event streams received from preceding tier’s sinks. 

The process of consolidation and aggregation continues until the last tier, 

before the sinks in the innermost tier route the events to HDFS. Agent 

count is maximum in the outermost tier while event volume is highest in 

the innermost tier.

Figure 2-18 shows three tiers, each containing multiple flume agents 

that read event streams from multiple web sources and transport data into 

HDFS cluster. Each sink pushes the event stream to the source of the agent 

in the successive tier. Tier-1 sources into Tier-2, which sources into Tier-3. 

This presents the scenario of Consolidation.

Chapter 2  Data lake ingestion strategies



80

A tiered architecture achieves load balancing and enables a 

distinguished layer between collector, storage, and aggregator agents.

�Features and design considerations

	 1.	 Channel type – Flume has three built-in channels, 

namely, MEMORY, JDBC, and FILE.

	 a.	 MEMORY – events are read from source to 

memory. Being a memory based operation, 

event ingestion is very fast. On contrary, since 

the changes captured are volatile in nature, 

incidents like agents crash or hardware issue 

can result into data loss. Business critical events 

are not a good choice but low category logs can 

be set of memory channel.

Source Channel

Source

Sink

Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel

Tier-1 Tier-2 Tier-3

HDFS

Sink

Channel

Figure 2-18.  Apace Flume tiered model
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	 i.� � You can set the event capacity using 

agent.channels.c1.capacity. Java 

heap space should also be increased in 

accordance with the capacity.

ii.� � Use keep-alive to determine wait time 

for the process that writes event into the 

channel.

iii.�� � Low put and take transaction latencies 

but not a cost-effective solution for a large 

event

	 b.	 FILE – events are read from source and written to 

files on a filesystem. Though slow, it is considered 

as durable and reliable option amongst the three 

channels as it uses Write Ahead Log mechanism 

along with storage directory to track events in the 

channel. Set the checkpointDir and dataDirs 

attributes of the channel to set directories where 

events are to be held.

	 c.	 JDBC – events are read and stored in Derby 

database. Enables ACID support as well but acute 

adoption trends due to performance issues.

	 d.	 Kafka channel – events get stored in a Kafka 

topic in a cluster. This is one of the recent 

integrations that can be retrofitted into multiple 

scenarios:

	 i.� � Flume source and sink available – event 

written to Kafka topic

ii.� � Flume source – event captured in a Kafka 

topic. Integration with other applications 

is use-case driven.
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iii.� � Flume sink – While Kafka captures the 

events from source systems, the sink 

helps in transporting events to HDFS, 

HBase, or Solr.

	 2.	 Channel capacity and transaction capacity – 

Channel capacity is the maximum number of 

events in a channel. Transaction capacity is the 

maximum number of events passed to a sink 

in single transaction. Attributes capacity and 

transactionCapacity are set for a channel.

	 a.	 Channel capacity must be large enough to 

queue many events. It depends on the size of an 

event, memory or disk size.

	 b.	 For MEMORY channel, channel capacity is 

limited by RAM size.

	 c.	 For FILE, channel capacity is limited by disk size.

	 d.	 Transaction capacity depends on batch size 

configured for the sinks

	 3.	 Event batch size – The transaction capacity or batch 

size is the maximum number of events that can be 

batched in a single transaction. It is set at the source 

and sink level.

	 a.	 Set at source – number of events in a batch 

written to channel

	 b.	 Set at sink – number of events captured by sink 

in single transaction before flush

	 c.	 Batch size <<channel>>.batchSize must be less 

than or equal to channel transaction capacity 

for proper resource management.

Chapter 2  Data lake ingestion strategies



83

	 d.	 Larger the batch size at sink, faster the channels 

function to free up space for more events. For a 

file channel, post flush operation may be time 

consuming for fat batches.

	 e.	 Best practice to have transaction capacity that 

yields optimum performance. Not fixed formula 

but a gradual exercise.

	 f.	 If a batch fails in between, entire batch is 

replayed; which may cause duplicates at 

destination

	 4.	 Channel selector (Replicator/Multiplexer) – An event 

in flume, can either be replicated to all channels 

or conditional-copied to selected channels. For 

instance, if an event to be consumed by HDFS, 

Kafka, HBase, and Spark, channels can be marked as 

replicator. Replication is the default channel selector 

type. If an event needs to be routed to different 

channels based on a rule or context, selected 

channels can be marked as multiplexer. Selector 

applies before event stream reaches the channel.

agent.sources.example.selector.type = multiplexing

agent.sources.example.selector.mapping.healthy = 

mychannel

agent.sources.example.selector.mapping.sick = 

yourchannel

agent.sources.example.selector.default = mychannel

agent.sources.example.selector.header = someHeader

In case replicator and multiplexer do not suffice the 

requirements, custom replication strategy can also 

be developed.
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	 5.	 Channel provisioning – if the channels are 

insufficiently provisioned in the topology, it will 

create a bottleneck in the event flow, in terms of 

event load per agent and resource utilization.

	 6.	 In a multi-hop flow or a tiered farm, keep note 

of the hops that an event makes before landing 

to destination. Note that the channels within the 

agents, at a given time, act as event buffers. In case 

of many hops, if any one agent goes faulty, the 

impact can get cascaded until source.

	 7.	 Flume follows extensible framework. Custom flume 

components are required to add their jars to FLUME_

CLASSPATH in flume-env.sh file. Other way is the 

plugins.d directory under $FLUME_HOME path. If plugins 

follow the defined format, flume-ng process will read 

the compatible plugins from plugins.d directory.

	 8.	 Flume topology is highly dependent on use case. 

For a time-series evenly generating data, flume can 

work wonders. If source data pipeline is wrecked, 

flume is not a good choice as it might potentially 

break flume topology and cause prolonged outages. 

Frequent configuration changes to flume topology 

are not recommended.

	 9.	 Due to global spread out, time zones have become 

indispensable piece of data ingestion strategy. All 

timings and schedules must be normalized a single 

time zone UTC in its standard format.
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�Conclusion
In this chapter, we discussed different approaches to bring data into a the 

Hadoop data lake. The chapter kicks off with the principles of ingestion 

framework and a quick brush up on basic ETL and ELT concepts. We 

discussed batched ingestion concepts and its design considerations. 

Under real-time processing, we explored how change data capture works 

and what its key drivers are in real-world scenarios. Key takeaways from 

this chapter would be two apache foundation products: sqoop and flume. 

Both have proved useful in integrating structured and unstructured data in 

data lake ecosystems.

In the next chapter, we’ll cover data streaming strategies, focusing 

majorly on Kafka.

Chapter 2  Data lake ingestion strategies


